Ejemplo n.º 1
0
def load_model(bison_args, device, data_handler, output_model_file=None):
    """
    Load a model.

    :param bison_args: instance of :py:class:BisonArguments
    :param device: the device to move the model to
    :param data_handler: the dataset handler, an instance of :py:class:BitextHandler or a subclass
    :param output_model_file: the location of the model to load
    :return: the loaded model
    """

    model_state_dict = None
    if output_model_file is not None:
        model_state_dict = torch.load(output_model_file)

    if bison_args.bert_model == 'bert-vanilla':
        # randomly initialises BERT weights instead of using a pre-trained model
        model = BertForMaskedLM(BertConfig.from_default_settings())
    else:
        model = BertForMaskedLM.from_pretrained(bison_args.bert_model,
                                                state_dict=model_state_dict)
    model.to(device)
    return model
def main():
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer(vocab_file=args.vocab_file)

    train_examples = None
    num_train_optimization_steps = None
    vocab_list = []
    with open(args.vocab_file, 'r') as fr:
        for line in fr:
            vocab_list.append(line.strip("\n"))

    if args.do_train:
        train_examples = create_examples(
            data_path=args.pretrain_train_path,
            max_seq_length=args.max_seq_length,
            masked_lm_prob=args.masked_lm_prob,
            max_predictions_per_seq=args.max_predictions_per_seq,
            vocab_list=vocab_list)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    model = BertForMaskedLM(
        config=BertConfig.from_json_file(args.bert_config_json))
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    best_loss = 100000

    if args.do_train:
        train_features = convert_examples_to_features(train_examples,
                                                      args.max_seq_length,
                                                      tokenizer)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for e in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                # masked_lm_loss
                loss = model(input_ids, segment_ids, input_mask, label_ids)

                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                if nb_tr_steps > 0 and nb_tr_steps % 100 == 0:
                    logger.info(
                        "===================== -epoch %d -train_step %d -train_loss %.4f\n"
                        % (e, nb_tr_steps, tr_loss / nb_tr_steps))

            if nb_tr_steps > 0 and nb_tr_steps % 2000 == 0:
                eval_examples = create_examples(
                    data_path=args.pretrain_dev_path,
                    max_seq_length=args.max_seq_length,
                    masked_lm_prob=args.masked_lm_prob,
                    max_predictions_per_seq=args.max_predictions_per_seq,
                    vocab_list=vocab_list)
                eval_features = convert_examples_to_features(
                    eval_examples, args.max_seq_length, tokenizer)
                all_input_ids = torch.tensor(
                    [f.input_ids for f in eval_features], dtype=torch.long)
                all_input_mask = torch.tensor(
                    [f.input_mask for f in eval_features], dtype=torch.long)
                all_segment_ids = torch.tensor(
                    [f.segment_ids for f in eval_features], dtype=torch.long)
                all_label_ids = torch.tensor(
                    [f.label_id for f in eval_features], dtype=torch.long)
                eval_data = TensorDataset(all_input_ids, all_input_mask,
                                          all_segment_ids, all_label_ids)
                # Run prediction for full data
                eval_sampler = SequentialSampler(eval_data)
                eval_dataloader = DataLoader(eval_data,
                                             sampler=eval_sampler,
                                             batch_size=args.eval_batch_size)

                model.eval()
                eval_loss = 0
                nb_eval_steps = 0
                for input_ids, input_mask, segment_ids, label_ids in tqdm(
                        eval_dataloader, desc="Evaluating"):
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        loss = model(input_ids, segment_ids, input_mask,
                                     label_ids)

                    eval_loss += loss.item()
                    nb_eval_steps += 1

                eval_loss = eval_loss / nb_eval_steps
                if eval_loss < best_loss:
                    # Save a trained model, configuration and tokenizer
                    model_to_save = model.module if hasattr(
                        model,
                        'module') else model  # Only save the model it-self

                    # If we save using the predefined names, we can load using `from_pretrained`
                    output_model_file = os.path.join(args.output_dir,
                                                     WEIGHTS_NAME)
                    torch.save(model_to_save.state_dict(), output_model_file)
                    best_loss = eval_loss
                logger.info(
                    "============================ -epoch %d -train_loss %.4f -eval_loss %.4f\n"
                    % (e, tr_loss / nb_tr_steps, eval_loss))
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--bert_model_or_config_file",
        default=None,
        type=str,
        required=True,
        help=
        "Directory containing pre-trained BERT model or path of configuration file (if no pre-training)."
    )
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument(
        "--on_memory",
        action='store_true',
        help="Whether to load train samples into memory or use disk")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--num_gpus",
        type=int,
        default=-1,
        help="Num GPUs to use for training (0 for none, -1 for all available)")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    # Check whether bert_model_or_config_file is a file or directory
    if os.path.isdir(args.bert_model_or_config_file):
        pretrained = True
        targets = [WEIGHTS_NAME, CONFIG_NAME, "tokenizer.pkl"]
        for t in targets:
            path = os.path.join(args.bert_model_or_config_file, t)
            if not os.path.exists(path):
                msg = "File '{}' not found".format(path)
                raise ValueError(msg)
        fp = os.path.join(args.bert_model_or_config_file, CONFIG_NAME)
        config = BertConfig(fp)
    else:
        pretrained = False
        config = BertConfig(args.bert_model_or_config_file)

    # What GPUs do we use?
    if args.num_gpus == -1:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        n_gpu = torch.cuda.device_count()
        device_ids = None
    else:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and args.num_gpus > 0 else "cpu")
        n_gpu = args.num_gpus
        if n_gpu > 1:
            device_ids = list(range(n_gpu))
    if args.local_rank != -1:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    # Check some other args
    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    if not args.do_train:
        raise ValueError(
            "Training is currently the only implemented execution option. Please set `do_train`."
        )

    # Seed RNGs
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # Prepare output directory
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # Make tokenizer
    if pretrained:
        fp = os.path.join(args.bert_model_or_config_file, "tokenizer.pkl")
        with open(fp, "rb") as f:
            tokenizer = pickle.load(f)
    else:
        training_data = [
            line.strip() for line in open(args.train_file).readlines()
        ]
        tokenizer = CuneiformCharTokenizer(training_data=training_data)
        tokenizer.trim_vocab(config.min_freq)
        # Adapt vocab size in config
        config.vocab_size = len(tokenizer.vocab)
    print("Size of vocab: {}".format(len(tokenizer.vocab)))

    # Get training data
    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_file)
        train_dataset = BERTDataset(args.train_file,
                                    tokenizer,
                                    seq_len=args.max_seq_length,
                                    corpus_lines=None,
                                    on_memory=args.on_memory)
        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    if pretrained:
        model = BertForMaskedLM.from_pretrained(args.bert_model_or_config_file)
    else:
        model = BertForMaskedLM(config)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model, device_ids=device_ids)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    # Prepare training log
    output_log_file = os.path.join(args.output_dir, "training_log.txt")
    with open(output_log_file, "w") as f:
        f.write("Steps\tTrainLoss\n")

    # Start training
    global_step = 0
    total_tr_steps = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
            #TODO: check if this works with current data generator from disk that relies on next(file)
            # (it doesn't return item back by index)
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            avg_loss = tr_loss / nb_tr_examples

            # Update training log
            total_tr_steps += nb_tr_steps
            log_data = [str(total_tr_steps), "{:.5f}".format(avg_loss)]
            with open(output_log_file, "a") as f:
                f.write("\t".join(log_data) + "\n")

            # Save model
            logger.info("** ** * Saving model ** ** * ")
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
            torch.save(model_to_save.state_dict(), output_model_file)
            output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
            with open(output_config_file, 'w') as f:
                f.write(model_to_save.config.to_json_string())
            fn = os.path.join(args.output_dir, "tokenizer.pkl")
            with open(fn, "wb") as f:
                pickle.dump(tokenizer, f)
Ejemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--on_memory",
        action='store_true',
        help="Whether to load train samples into memory or use disk")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--hybrid_attention",
                        action='store_true',
                        help="Whether to use hybrid attention")
    parser.add_argument("--continue_training",
                        action='store_true',
                        help="Continue training from a checkpoint")
    parser.add_argument("--no_pretrain",
                        default="",
                        action='store_true',
                        help="Whether not to use pretrained model")
    parser.add_argument(
        "--config_path",
        default="",
        type=str,
        help="Where to load the config file when not using pretrained model")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train:
        raise ValueError(
            "Training is currently the only implemented execution option. Please set `do_train`."
        )

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and not args.continue_training:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    #train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_file)
        train_dataset = BERTDataset(args.train_file,
                                    tokenizer,
                                    seq_len=args.max_seq_length,
                                    corpus_lines=None,
                                    on_memory=args.on_memory)
        num_train_optimization_steps = len(
            train_dataset
        ) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps / torch.distributed.get_world_size(
            )
        num_train_optimization_steps = math.ceil(num_train_optimization_steps)

    if args.no_pretrain:
        if not args.config_path:
            raise ValueError(
                "Config file is needed when not using the pretrained model")
        config = BertConfig(args.config_path)
        model = BertForMaskedLM(config)
    else:
        # Prepare model
        model = BertForMaskedLM.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    if args.hybrid_attention:
        max_seq_length = args.max_seq_length
        attention_mask = torch.ones(12,
                                    max_seq_length,
                                    max_seq_length,
                                    dtype=torch.long)
        # left attention
        attention_mask[:2, :, :] = torch.tril(
            torch.ones(max_seq_length, max_seq_length, dtype=torch.long))
        # right attention
        attention_mask[2:4, :, :] = torch.triu(
            torch.ones(max_seq_length, max_seq_length, dtype=torch.long))
        # local attention, window size = 3
        attention_mask[4:6, :, :] = torch.triu(
            torch.tril(
                torch.ones(max_seq_length, max_seq_length, dtype=torch.long),
                1), -1)
        attention_mask = torch.cat(
            [attention_mask.unsqueeze(0) for _ in range(8)])
        attention_mask = attention_mask.to(device)
    else:
        attention_mask = None

    global_step = 0
    epoch_start = 0
    if args.do_train:
        if args.continue_training:
            # if checkpoint file exists, find the last checkpoint
            if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
                all_cp = os.listdir(args.output_dir)
                steps = [
                    int(re.search('_\d+', cp).group()[1:]) for cp in all_cp
                    if re.search('_\d+', cp)
                ]
                if len(steps) == 0:
                    raise ValueError(
                        "No existing checkpoint. Please do not use --continue_training."
                    )
                max_step = max(steps)
                # load checkpoint
                checkpoint = torch.load(
                    os.path.join(args.output_dir,
                                 'checkpoints_' + str(max_step) + '.pt'))
                logger.info("***** Loading checkpoint *****")
                logger.info("  Num steps = %d", checkpoint['global_step'])
                logger.info("  Num epoch = %d", checkpoint['epoch'])
                logger.info("  Loss = %d, %d", checkpoint['loss'],
                            checkpoint['loss_now'])
                model.module.load_state_dict(checkpoint['model'])
                optimizer.load_state_dict(checkpoint['optimizer'])
                global_step = checkpoint['global_step']
                epoch_start = checkpoint['epoch']
                del checkpoint
            else:
                raise ValueError(
                    "No existing checkpoint. Please do not use --continue_training."
                )

        writer = SummaryWriter(log_dir=os.environ['HOME'])
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
            #TODO: check if this works with current data generator from disk that relies on next(file)
            # (it doesn't return item back by index)
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        tr_loss_1000 = 0
        for ep in trange(epoch_start, int(args.num_train_epochs),
                         desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids = batch
                loss = model(input_ids,
                             segment_ids,
                             input_mask,
                             lm_label_ids,
                             hybrid_mask=attention_mask)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                tr_loss_1000 += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
                # log the training loss for every 1000 steps
                if global_step % 1000 == 999:
                    writer.add_scalar('data/loss', tr_loss_1000 / 1000,
                                      global_step)
                    logger.info("training steps: %s", global_step)
                    logger.info("training loss per 1000: %s",
                                tr_loss_1000 / 1000)
                    tr_loss_1000 = 0
                # save the checkpoint for every 10000 steps
                if global_step % 10000 == 0:
                    model_to_save = model.module if hasattr(
                        model,
                        'module') else model  # Only save the model it-self
                    output_file = os.path.join(
                        args.output_dir,
                        "checkpoints_" + str(global_step) + ".pt")
                    checkpoint = {
                        'model': model_to_save.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'epoch': ep,
                        'global_step': global_step,
                        'loss': tr_loss / nb_tr_steps,
                        'loss_now': tr_loss_1000
                    }
                    if args.do_train:
                        torch.save(checkpoint, output_file)
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(args.output_dir,
                                             "pytorch_model.bin_" + str(ep))
            if args.do_train:
                torch.save(model_to_save.state_dict(), output_model_file)
            logger.info("training loss: %s", tr_loss / nb_tr_steps)

        # Save a trained model
        logger.info("** ** * Saving fine - tuned model ** ** * ")
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
        if args.do_train:
            torch.save(model_to_save.state_dict(), output_model_file)
Ejemplo n.º 5
0
eval_examples = create_examples(data_path=args.pretrain_dev_path,
                                         max_seq_length=args.max_seq_length,
                                         masked_lm_prob=args.masked_lm_prob,
                                         max_predictions_per_seq=args.max_predictions_per_seq,
                                         vocab_list=vocab_list)
eval_features = convert_examples_to_features(
                eval_examples, args.max_seq_length, tokenizer)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss = 0
nb_eval_steps = 0
# device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
device = torch.device("cpu")

model.to(device)
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
    input_ids = input_ids.to(device)
    input_mask = input_mask.to(device)
    segment_ids = segment_ids.to(device)
    label_ids = label_ids.to(device)

    with torch.no_grad():
        loss = model(input_ids, segment_ids, input_mask, label_ids)
print(loss)