Ejemplo n.º 1
0
def test_default():
    runner = Runner(model=TestModel,
                    optimizer=TestOptimizer,
                    criterion=TestCriterion,
                    metrics=TestMetric,
                    callbacks=None)
    runner.fit(TestLoader, epochs=2)
Ejemplo n.º 2
0
def test_default():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        callbacks=None,
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 3
0
def test_accumulate_steps():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        accumulate_steps=10,
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 4
0
def test_segm_callback(callback):
    runner = Runner(
        model=TEST_SEGM_MODEL,
        optimizer=TEST_SEGM_OPTIMZER,
        criterion=TEST_CRITERION,
        callbacks=callback,
    )
    runner.fit(TEST_SEGM_LOADER, epochs=2)
Ejemplo n.º 5
0
def test_callback(callback):
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        callbacks=[callback, pt_clb.BatchMetrics(TEST_METRIC)],
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 6
0
def test_ModelEma_callback():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        callbacks=pt_clb.ModelEma(TEST_MODEL),
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 7
0
def test_fp16_training():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        use_fp16=True,
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 8
0
def test_grad_clip_loader():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        gradient_clip_val=1.0,
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 9
0
def test_accumulate_steps_with_clip_grad():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        callbacks=[pt_clb.GradientClipping(1)],
        accumulate_steps=4,
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 10
0
def test_val_loader():
    runner = Runner(model=TEST_MODEL,
                    optimizer=TEST_OPTIMIZER,
                    criterion=TEST_CRITERION)
    runner.fit(TEST_LOADER,
               epochs=2,
               steps_per_epoch=100,
               val_loader=TEST_LOADER,
               val_steps=200)
Ejemplo n.º 11
0
def test_Timer_callback():
    runner = Runner(
        model=TestModel,
        optimizer=TestOptimizer,
        criterion=TestCriterion,
        metrics=TestMetric,
        callbacks=pt_clb.Timer(),
    )
    runner.fit(TestLoader, epochs=2)
Ejemplo n.º 12
0
def test_Mixup():
    runner = Runner(
        model=TestModel,
        optimizer=TestOptimizer,
        criterion=TestCriterion,
        metrics=TestMetric,
        callbacks=pt_clb.Mixup(0.2, NUM_CLASSES),
    )
    runner.fit(TestLoader, epochs=2)
Ejemplo n.º 13
0
def test_FileLogger_callback():
    runner = Runner(
        model=TestModel,
        optimizer=TestOptimizer,
        criterion=TestCriterion,
        metrics=TestMetric,
        callbacks=pt_clb.FileLogger(TMP_PATH),
    )
    runner.fit(TestLoader, epochs=2)
Ejemplo n.º 14
0
def test_TensorBoard():
    runner = Runner(
        model=TestModel,
        optimizer=TestOptimizer,
        criterion=TestCriterion,
        metrics=TestMetric,
        callbacks=pt_clb.TensorBoard(log_dir=TMP_PATH),
    )
    runner.fit(TestLoader, epochs=2)
Ejemplo n.º 15
0
def test_CheckpointSaver_callback():
    runner = Runner(
        model=TestModel,
        optimizer=TestOptimizer,
        criterion=TestCriterion,
        metrics=TestMetric,
        callbacks=pt_clb.CheckpointSaver(TMP_PATH, save_name="model.chpn"),
    )
    runner.fit(TestLoader, epochs=2)
Ejemplo n.º 16
0
def test_ReduceLROnPlateau_callback():
    runner = Runner(
        model=TestModel,
        optimizer=TestOptimizer,
        criterion=TestCriterion,
        metrics=TestMetric,
        callbacks=pt_clb.ReduceLROnPlateau(),
    )
    runner.fit(TestLoader, epochs=2)
Ejemplo n.º 17
0
def test_callback(callback):
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        metrics=TEST_METRIC,
        callbacks=callback,
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 18
0
def test_tensorboar_CM():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        callbacks=[
            pt_clb.TensorBoardCM(),
            pt_clb.TensorBoard(log_dir=TMP_PATH)
        ],
    )
    runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 19
0
def test_val_loader():
    runner = Runner(
        model=TestModel,
        optimizer=TestOptimizer,
        criterion=TestCriterion,
        metrics=TestMetric,
    )
    runner.fit(TestLoader,
               epochs=2,
               steps_per_epoch=100,
               val_loader=TestLoader,
               val_steps=200)
Ejemplo n.º 20
0
def test_loader_metric():
    """Check that LoaderMetric doesn't store grads and results are on cpu to avoid memory leak"""
    clb = pt_clb.LoaderMetrics(TEST_METRIC)
    runner = Runner(model=TEST_MODEL,
                    optimizer=TEST_OPTIMIZER,
                    criterion=TEST_CRITERION,
                    callbacks=clb)
    runner.fit(TEST_LOADER, epochs=2)
    assert clb.target[0].grad_fn is None
    assert clb.output[0].grad_fn is None
    assert clb.target[0].device == torch.device("cpu")
    assert clb.output[0].device == torch.device("cpu")
Ejemplo n.º 21
0
def test_invalid_phases_scheduler_mode():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        callbacks=pt_clb.PhasesScheduler([
            {
                "ep": [0, 1],
                "lr": [0, 1],
                "mode": "new_mode"
            },
        ]),
    )
    with pytest.raises(ValueError):
        runner.fit(TEST_LOADER, epochs=2)
Ejemplo n.º 22
0
def test_state_batch_size():
    runner = Runner(
        model=TEST_MODEL,
        optimizer=TEST_OPTIMIZER,
        criterion=TEST_CRITERION,
        callbacks=None,
    )
    runner.fit(TEST_LOADER, epochs=1)
    # check that batch_size is copied correctly
    assert runner.state.batch_size == BS

    # check that if batch_size is not given, it would be 1
    loader = deepcopy(TEST_LOADER)
    delattr(loader, "batch_size")
    runner.fit(loader, epochs=1)
    assert runner.state.batch_size == 1