def Dens(mu):
    dens = SK(mu=mu, Sigma=Sigma_lat).total_density()
    if abs(dens.imag) > 1e-20:
        mpi.report(
            "Warning: Imaginary part of density will be ignored ({})".format(
                str(abs(dens.imag))))
    return dens.real
Ejemplo n.º 2
0
 def Dens(mu):
     dens = 2 * extract_Gloc(mu)['nambu'][:4, :4].total_density()
     if abs(dens.imag) > 1e-20:
         mpi.report(
             "Warning: Imaginary part of density will be ignored ({})".
             format(str(abs(dens.imag))))
     return dens.real
Ejemplo n.º 3
0
    def __call__(self, prop_to_be_diagonal = 'eal'):
        '''Calculates the diagonalisation.'''

        if (prop_to_be_diagonal=='eal'):
            eal = self.SK.eff_atomic_levels()[0]
        elif (prop_to_be_diagonal=='dm'):
            eal = self.SK.simple_point_dens_mat()[0]
        else:
            mpi.report("Not a valid quantitiy to be diagonal! Choices are 'eal' or 'dm'")
            return 0

        if (self.SK.SO==0):
            self.eig,self.w = numpy.linalg.eigh(eal['up'])

            # now calculate new Transformation matrix
            self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()
            
            
            #return numpy.dot(self.w.transpose().conjugate(),numpy.dot(eal['up'],self.w))
               
        else:

            self.eig,self.w = numpy.linalg.eigh(eal['ud'])

            # now calculate new Transformation matrix
            self.T = numpy.dot(self.T.transpose().conjugate(),self.w).conjugate().transpose()

            
            #MPI.report("SO not implemented yet!")
            #return 0
            
        # measure for the 'unity' of the transformation:
        wsqr = sum(abs(self.w.diagonal())**2)/self.w.diagonal().size
        return wsqr
Ejemplo n.º 4
0
    def repack(self):
        """
        Calls the h5repack routine in order to reduce the file size of the hdf5 archive.

        Note
        ----
        Should only be used before the first invokation of HDFArchive in the program, 
        otherwise the hdf5 linking will be broken.

        """

        import subprocess

        if not (mpi.is_master_node()):
            return
        mpi.report("Repacking the file %s" % self.hdf_file)

        retcode = subprocess.call([
            hdf5_command_path + "/h5repack",
            "-i%s" % self.hdf_file, "-otemphgfrt.h5"
        ])
        if retcode != 0:
            mpi.report("h5repack failed!")
        else:
            subprocess.call(["mv", "-f", "temphgfrt.h5", "%s" % self.hdf_file])
Ejemplo n.º 5
0
    def __init__(self, SK=None, hdf_datafile=None):
        """
        Initialization of the class. There are two ways to do so:
        
        - existing SumkLDA class :  when you have an existing SumkLDA instance
        - from hdf5 archive :  when you want to use data from hdf5 archive
        
        Giving the class instance overrides giving the string for the hdf5 archive.
        
        Parameters
        ----------
        SK : class SumkLDA, optional
             Existing instance of SumkLDA class.
        hdf5_datafile : string, optional
                        Name of hdf5 archive to be used.
        
        """

        if SK is None:
            # build our own SK instance
            if hdf_datafile is None:
                mpi.report("trans_basis: give SK instance or HDF filename!")
                return 0

            Converter = Wien2kConverter(filename=hdf_datafile, repacking=False)
            Converter.convert_dft_input()
            del Converter

            self.SK = SumkDFT(hdf_file=hdf_datafile + ".h5", use_dft_blocks=False)
        else:
            self.SK = SK

        self.T = copy.deepcopy(self.SK.T[0])
        self.w = numpy.identity(SK.corr_shells[0]["dim"])
Ejemplo n.º 6
0
    def __init__(self,
                 Beta,
                 Uint,
                 JHund,
                 l,
                 Nmsb=1025,
                 T=None,
                 UseSpinOrbit=False,
                 Verbosity=0):

        Solver.__init__(self,
                        beta=Beta,
                        l=l,
                        n_msb=Nmsb,
                        use_spin_orbit=UseSpinOrbit)

        self.Uint = Uint
        self.JHund = JHund
        self.T = T
        self.Verbosity = Verbosity

        msg = """
**********************************************************************************
 Warning: You are using the old constructor for the solver. Beware that this will
 be deprecated in future versions. Please check the documentation.
**********************************************************************************
"""
        mpi.report(msg)
Ejemplo n.º 7
0
    def __init__(self, SK=None, hdf_datafile=None):
        """
        Initialization of the class. There are two ways to do so:

        - existing SumkLDA class :  when you have an existing SumkLDA instance
        - from hdf5 archive :  when you want to use data from hdf5 archive

        Giving the class instance overrides giving the string for the hdf5 archive.

        Parameters
        ----------
        SK : class SumkLDA, optional
             Existing instance of SumkLDA class.
        hdf5_datafile : string, optional
                        Name of hdf5 archive to be used.

        """

        if SK is None:
            # build our own SK instance
            if hdf_datafile is None:
                mpi.report("trans_basis: give SK instance or HDF filename!")
                return 0

            Converter = Wien2kConverter(filename=hdf_datafile, repacking=False)
            Converter.convert_dft_input()
            del Converter

            self.SK = SumkDFT(hdf_file=hdf_datafile + '.h5',
                              use_dft_blocks=False)
        else:
            self.SK = SK

        self.T = copy.deepcopy(self.SK.T[0])
        self.w = numpy.identity(SK.corr_shells[0]['dim'])
Ejemplo n.º 8
0
    def __init__(self, Beta, GFstruct, N_Matsubara_Frequencies=1025, **param):

        Solver.__init__(self, beta=Beta, gf_struct=GFstruct, n_w=N_Matsubara_Frequencies)
        self.params = param
        self.gen_keys = copy.deepcopy(self.__dict__)

        msg = """
**********************************************************************************
 Warning: You are using the old constructor for the solver. Beware that this will
 be deprecated in future versions. Please check the documentation.
**********************************************************************************
"""
        mpi.report(msg)
Ejemplo n.º 9
0
    def __repack(self):
        """Calls the h5repack routine, in order to reduce the file size of the hdf5 archive.
           Should only be used BEFORE the first invokation of HDFArchive in the program, otherwise
           the hdf5 linking is broken!!!"""

        import subprocess

        if not (mpi.is_master_node()): return

        mpi.report("Repacking the file %s"%self.hdf_file)

        retcode = subprocess.call(["h5repack","-i%s"%self.hdf_file, "-otemphgfrt.h5"])
        if (retcode!=0):
            mpi.report("h5repack failed!")
        else:
            subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
    def __init__(self, Beta, GFstruct, N_Matsubara_Frequencies=1025, **param):

        Solver.__init__(self,
                        beta=Beta,
                        gf_struct=GFstruct,
                        n_w=N_Matsubara_Frequencies)
        self.params = param
        self.gen_keys = copy.deepcopy(self.__dict__)

        msg = """
**********************************************************************************
 Warning: You are using the old constructor for the solver. Beware that this will
 be deprecated in future versions. Please check the documentation.
**********************************************************************************
"""
        mpi.report(msg)
Ejemplo n.º 11
0
    def __init__(self, Beta, Uint, JHund, l, Nmsb=1025, T=None, UseSpinOrbit=False, Verbosity=0):


        Solver.__init__(self, beta=Beta, l=l, n_msb=Nmsb, use_spin_orbit=UseSpinOrbit)

        self.Uint = Uint
        self.JHund = JHund
        self.T = T
        self.Verbosity = Verbosity

        msg = """
**********************************************************************************
 Warning: You are using the old constructor for the solver. Beware that this will
 be deprecated in future versions. Please check the documentation.
**********************************************************************************
"""
        mpi.report(msg)
Ejemplo n.º 12
0
    def __repack(self):
        """Calls the h5repack routine, in order to reduce the file size of the hdf5 archive.
           Should only be used BEFORE the first invokation of HDFArchive in the program, otherwise
           the hdf5 linking is broken!!!"""

        import subprocess

        if not (mpi.is_master_node()): return

        mpi.report("Repacking the file %s" % self.hdf_file)

        retcode = subprocess.call(
            ["h5repack", "-i%s" % self.hdf_file, "-otemphgfrt.h5"])
        if (retcode != 0):
            mpi.report("h5repack failed!")
        else:
            subprocess.call(["mv", "-f", "temphgfrt.h5", "%s" % self.hdf_file])
Ejemplo n.º 13
0
    def read_input_from_hdf(self, subgrp, things_to_read, optional_things=[]):
        """
        Reads data from the HDF file
        """
        
        retval = True
        # init variables on all nodes:
        for it in things_to_read: exec "self.%s = 0"%it
        for it in optional_things: exec "self.%s = 0"%it
        
        if (mpi.is_master_node()):
            ar=HDFArchive(self.hdf_file,'a')
            if (subgrp in ar):
                # first read the necessary things:
                for it in things_to_read:
                    if (it in ar[subgrp]):
                        exec "self.%s = ar['%s']['%s']"%(it,subgrp,it)
                    else:
                        mpi.report("Loading %s failed!"%it)
                        retval = False
                   
                if ((retval) and (len(optional_things)>0)):
                    # if necessary things worked, now read optional things:
                    retval = {}
                    for it in optional_things:
                        if (it in ar[subgrp]):
                            exec "self.%s = ar['%s']['%s']"%(it,subgrp,it)
                            retval['%s'%it] = True
                        else:
                            retval['%s'%it] = False
            else:
                mpi.report("Loading failed: No %s subgroup in HDF5!"%subgrp)
                retval = False

            del ar

        # now do the broadcasting:
        for it in things_to_read: exec "self.%s = mpi.bcast(self.%s)"%(it,it)
        for it in optional_things: exec "self.%s = mpi.bcast(self.%s)"%(it,it)
        

        retval = mpi.bcast(retval)
               
        return retval
Ejemplo n.º 14
0
    def fit_tails(self): 
	"""Fits the tails using the constant value for the Re Sigma calculated from F=Sigma*G.
           Works only for blocks of size one."""
	
	#if (len(self.gf_struct)==2*self.n_orb):
        if (self.blocssizeone):
            spinblocs = [v for v in self.map]
            mpi.report("Fitting tails manually")
	
            known_coeff = numpy.zeros([1,1,2],numpy.float_)
            msh = [x.imag for x in self.G[self.map[spinblocs[0]][0]].mesh ]
            fit_start = msh[self.fitting_Frequency_Start]
            fit_stop = msh[self.N_Frequencies_Accumulated]	
            
            # Fit the tail of G just to get the density
            for n,g in self.G:
                g.fitTail([[[0,0,1]]],7,fit_start,2*fit_stop) 
            densmat = self.G.density()

            for sig1 in spinblocs:
                for i in range(self.n_orb):

                    coeff = 0.0

                    for sig2 in spinblocs:
                        for j in range(self.n_orb):
                            if (sig1==sig2):
                                coeff += self.U[self.offset+i,self.offset+j] * densmat[self.map[sig1][j]][0,0].real
                            else:
                                coeff += self.Up[self.offset+i,self.offset+j] * densmat[self.map[sig2][j]][0,0].real

                    known_coeff[0,0,1] = coeff
                    self.Sigma[self.map[sig1][i]].fitTail(fixed_coef = known_coeff, order_max = 3, fit_start = fit_start, fit_stop = fit_stop)

        else:

            for n,sig in self.Sigma:

                known_coeff = numpy.zeros([sig.N1,sig.N2,1],numpy.float_)
                msh = [x.imag for x in sig.mesh]
                fit_start = msh[self.fitting_Frequency_Start]
                fit_stop  = msh[self.N_Frequencies_Accumulated]
            
                sig.fitTail(fixed_coef = known_coeff, order_max = 3, fit_start = fit_start, fit_stop = fit_stop)
Ejemplo n.º 15
0
    def calculate_diagonalisation_matrix(self, prop_to_be_diagonal='eal'):
        """
        Calculates the diagonalisation matrix w, and stores it as member of the class.

        Parameters
        ----------
        prop_to_be_diagonal : string, optional
                              Defines the property to be diagonalized.

                              - 'eal' : local hamiltonian (i.e. crystal field)
                              - 'dm' : local density matrix

        Returns
        -------
        wsqr : double
               Measure for the degree of rotation done by the diagonalisation. wsqr=1 means no rotation.

        """

        if prop_to_be_diagonal == 'eal':
            prop = self.SK.eff_atomic_levels()[0]
        elif prop_to_be_diagonal == 'dm':
            prop = self.SK.density_matrix(method='using_point_integration')[0]
        else:
            mpi.report(
                "trans_basis: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'."
            )
            return 0

        if self.SK.SO == 0:
            self.eig, self.w = numpy.linalg.eigh(prop['up'])
            # calculate new Transformation matrix
            self.T = numpy.dot(self.T.transpose().conjugate(),
                               self.w).conjugate().transpose()
        else:
            self.eig, self.w = numpy.linalg.eigh(prop['ud'])
            # calculate new Transformation matrix
            self.T = numpy.dot(self.T.transpose().conjugate(),
                               self.w).conjugate().transpose()

        # measure for the 'unity' of the transformation:
        wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size
        return wsqr
Ejemplo n.º 16
0
    def __init__(self, SK=None, hdf_datafile=None):
        '''Inits the class by reading the input.'''

        if (SK==None):
            # build our own SK instance
            if (hdf_datafile==None):
                mpi.report("Give SK instance or HDF filename!")
                return 0
                           
            Converter = Wien2kConverter(filename=hdf_datafile,repacking=False)
            Converter.convert_dmft_input()
            del Converter
            
            self.SK = SumkLDA(hdf_file=hdf_datafile+'.h5',use_lda_blocks=False)
        else:
            self.SK = SK
            
        self.T = copy.deepcopy(self.SK.T[0])
        self.w = numpy.identity(SK.corr_shells[0][3])
Ejemplo n.º 17
0
    def calculate_diagonalisation_matrix(self, prop_to_be_diagonal='eal'):
        """
        Calculates the diagonalisation matrix w, and stores it as member of the class.

        Parameters
        ----------
        prop_to_be_diagonal : string, optional
                              Defines the property to be diagonalized.

                              - 'eal' : local hamiltonian (i.e. crystal field)
                              - 'dm' : local density matrix

        Returns
        -------
        wsqr : double
               Measure for the degree of rotation done by the diagonalisation. wsqr=1 means no rotation.

        """

        if prop_to_be_diagonal == 'eal':
            prop = self.SK.eff_atomic_levels()[0]
        elif prop_to_be_diagonal == 'dm':
            prop = self.SK.density_matrix(method='using_point_integration')[0]
        else:
            mpi.report(
                "trans_basis: not a valid quantitiy to be diagonal. Choices are 'eal' or 'dm'.")
            return 0

        if self.SK.SO == 0:
            self.eig, self.w = numpy.linalg.eigh(prop['up'])
            # calculate new Transformation matrix
            self.T = numpy.dot(self.T.transpose().conjugate(),
                               self.w).conjugate().transpose()
        else:
            self.eig, self.w = numpy.linalg.eigh(prop['ud'])
            # calculate new Transformation matrix
            self.T = numpy.dot(self.T.transpose().conjugate(),
                               self.w).conjugate().transpose()

        # measure for the 'unity' of the transformation:
        wsqr = sum(abs(self.w.diagonal())**2) / self.w.diagonal().size
        return wsqr
Ejemplo n.º 18
0
def solve_self_consistent_dmft(p):

    ps = []
    for dmft_iter in xrange(p.n_iter):
        mpi.report('--> DMFT Iteration: {:d}'.format(p.iter))
        p = dmft_self_consistent_step(p)
        ps.append(p)
        mpi.report('--> DMFT Convergence: dG_l = {:f}'.format(p.dG_l))
        if p.dG_l < p.G_l_tol: break

    if dmft_iter >= p.n_iter - 1: mpi.report('--> Warning: DMFT Not converged!')
    else: mpi.report('--> DMFT Converged: dG_l = {:f}'.format(p.dG_l))
    return ps
Ejemplo n.º 19
0
    def repack(self):
        """
        Calls the h5repack routine in order to reduce the file size of the hdf5 archive.

        Note
        ----
        Should only be used before the first invokation of HDFArchive in the program, 
        otherwise the hdf5 linking will be broken.

        """

        import subprocess

        if not (mpi.is_master_node()): return
        mpi.report("Repacking the file %s"%self.hdf_file)

        retcode = subprocess.call([hdf5_command_path+"/h5repack","-i%s"%self.hdf_file,"-otemphgfrt.h5"])
        if retcode != 0:
            mpi.report("h5repack failed!")
        else:
            subprocess.call(["mv","-f","temphgfrt.h5","%s"%self.hdf_file])
Ejemplo n.º 20
0
    def __init__(self, Beta, Norb, U_interact=None, J_Hund=None, GFStruct=False, map=False, use_spinflip=False,
                 useMatrix = True, l=2, T=None, dimreps=None, irep=None, deg_orbs = [], Sl_Int = None):

        SolverMultiBand.__init__(self, beta=Beta, n_orb=Norb, gf_struct=GFStruct, map=map)
        self.U_interact = U_interact
        self.J_Hund = J_Hund
        self.use_spinflip = use_spinflip
        self.useMatrix = useMatrix
        self.l = l
        self.T = T
        self.dimreps = dimreps
        self.irep = irep
        self.deg_orbs = deg_orbs
        self.Sl_Int = Sl_Int
        self.gen_keys = copy.deepcopy(self.__dict__)

        msg = """
**********************************************************************************
 Warning: You are using the old constructor for the solver. Beware that this will
 be deprecated in future versions. Please check the documentation.
**********************************************************************************
"""
        mpi.report(msg)
Ejemplo n.º 21
0
    def transport_distribution(self, beta, directions=['xx'], energy_window=None, Om_mesh=[0.0], with_Sigma=False, n_om=None, broadening=0.0):
        r"""
        Calculates the transport distribution 

        .. math::
           \Gamma_{\alpha\beta}\left(\omega+\Omega/2, \omega-\Omega/2\right) = \frac{1}{V} \sum_k Tr\left(v_{k,\alpha}A_{k}(\omega+\Omega/2)v_{k,\beta}A_{k}\left(\omega-\Omega/2\right)\right)

        in the direction :math:`\alpha\beta`. The velocities :math:`v_{k}` are read from the transport subgroup of the hdf5 archive. 

        Parameters
        ----------

        beta : double
            Inverse temperature :math:`\beta`.
        directions : list of double, optional
            :math:`\alpha\beta` e.g.: ['xx','yy','zz','xy','xz','yz'].
        energy_window : list of double, optional
            Specifies the upper and lower limit of the frequency integration for :math:`\Omega=0.0`. The window is automatically enlarged by the largest :math:`\Omega` value, 
            hence the integration is performed in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)].
        Om_mesh : list of double, optional
            :math:`\Omega` frequency mesh of the optical conductivity. For the conductivity and the Seebeck coefficient :math:`\Omega=0.0` has to be
            part of the mesh. In the current version Om_mesh is repined to the mesh provided by the self-energy! The actual mesh is printed on the screen and stored as
            member Om_mesh.
        with_Sigma : boolean, optional
            Determines whether the calculation is performed with or without self energy. If this parameter is set to False the self energy is set to zero (i.e. the DFT band 
            structure :math:`A(k,\omega)` is used). Note: For with_Sigma=False it is necessary to specify the parameters energy_window, n_om and broadening.
        n_om : integer, optional
            Number of equidistant frequency points in the interval [energy_window[0]-max(Om_mesh), energy_window[1]+max(Om_mesh)]. This parameters is only used if
            with_Sigma = False.
        broadening : double, optional
            Lorentzian broadening. It is necessary to specify the boradening if with_Sigma = False, otherwise this parameter can be set to 0.0.
        """

        # Check if wien converter was called and read transport subgroup form
        # hdf file
        if mpi.is_master_node():
            ar = HDFArchive(self.hdf_file, 'r')
            if not (self.transp_data in ar):
                raise IOError, "transport_distribution: No %s subgroup in hdf file found! Call convert_transp_input first." % self.transp_data
            # check if outputs file was converted
            if not ('n_symmetries' in ar['dft_misc_input']):
                raise IOError,  "transport_distribution: n_symmetries missing. Check if case.outputs file is present and call convert_misc_input() or convert_dft_input()."

        self.read_transport_input_from_hdf()

        if mpi.is_master_node():
            # k-dependent-projections.
            assert self.k_dep_projection == 1, "transport_distribution: k dependent projection is not implemented!"
            # positive Om_mesh
            assert all(
                Om >= 0.0 for Om in Om_mesh), "transport_distribution: Om_mesh should not contain negative values!"

        # Check if energy_window is sufficiently large and correct

        if (energy_window[0] >= energy_window[1] or energy_window[0] >= 0 or energy_window[1] <= 0):
            assert 0, "transport_distribution: energy_window wrong!"

        if (abs(self.fermi_dis(energy_window[0], beta) * self.fermi_dis(-energy_window[0], beta)) > 1e-5
                or abs(self.fermi_dis(energy_window[1], beta) * self.fermi_dis(-energy_window[1], beta)) > 1e-5):
            mpi.report(
                "\n####################################################################")
            mpi.report(
                "transport_distribution: WARNING - energy window might be too narrow!")
            mpi.report(
                "####################################################################\n")

        # up and down are equivalent if SP = 0
        n_inequiv_spin_blocks = self.SP + 1 - self.SO
        self.directions = directions
        dir_to_int = {'x': 0, 'y': 1, 'z': 2}

        # calculate A(k,w)
        #######################################

        # Define mesh for Green's function and in the specified energy window
        if (with_Sigma == True):
            self.omega = numpy.array([round(x.real, 12)
                                      for x in self.Sigma_imp_w[0].mesh])
            mesh = None
            mu = self.chemical_potential
            n_om = len(self.omega)
            mpi.report("Using omega mesh provided by Sigma!")

            if energy_window is not None:
                # Find according window in Sigma mesh
                ioffset = numpy.sum(
                    self.omega < energy_window[0] - max(Om_mesh))
                self.omega = self.omega[numpy.logical_and(self.omega >= energy_window[
                                                          0] - max(Om_mesh), self.omega <= energy_window[1] + max(Om_mesh))]
                n_om = len(self.omega)

                # Truncate Sigma to given omega window
                # In the future there should be an option in gf to manipulate the mesh (e.g. truncate) directly.
                # For now we stick with this:
                for icrsh in range(self.n_corr_shells):
                    Sigma_save = self.Sigma_imp_w[icrsh].copy()
                    spn = self.spin_block_names[self.corr_shells[icrsh]['SO']]
                    glist = lambda: [GfReFreq(indices=inner, window=(self.omega[
                                              0], self.omega[-1]), n_points=n_om) for block, inner in self.gf_struct_sumk[icrsh]]
                    self.Sigma_imp_w[icrsh] = BlockGf(
                        name_list=spn, block_list=glist(), make_copies=False)
                    for i, g in self.Sigma_imp_w[icrsh]:
                        for iL in g.indices:
                            for iR in g.indices:
                                for iom in xrange(n_om):
                                    g.data[iom, iL, iR] = Sigma_save[
                                        i].data[ioffset + iom, iL, iR]
        else:
            assert n_om is not None, "transport_distribution: Number of omega points (n_om) needed to calculate transport distribution!"
            assert energy_window is not None, "transport_distribution: Energy window needed to calculate transport distribution!"
            assert broadening != 0.0 and broadening is not None, "transport_distribution: Broadening necessary to calculate transport distribution!"
            self.omega = numpy.linspace(
                energy_window[0] - max(Om_mesh), energy_window[1] + max(Om_mesh), n_om)
            mesh = [energy_window[0] -
                    max(Om_mesh), energy_window[1] + max(Om_mesh), n_om]
            mu = 0.0

        # Define mesh for optic conductivity
        d_omega = round(numpy.abs(self.omega[0] - self.omega[1]), 12)
        iOm_mesh = numpy.array([round((Om / d_omega), 0) for Om in Om_mesh])
        self.Om_mesh = iOm_mesh * d_omega

        if mpi.is_master_node():
            print "Chemical potential: ", mu
            print "Using n_om = %s points in the energy_window [%s,%s]" % (n_om, self.omega[0], self.omega[-1]),
            print "where the omega vector is:"
            print self.omega
            print "Calculation requested for Omega mesh:   ", numpy.array(Om_mesh)
            print "Omega mesh automatically repined to:  ", self.Om_mesh

        self.Gamma_w = {direction: numpy.zeros(
            (len(self.Om_mesh), n_om), dtype=numpy.float_) for direction in self.directions}

        # Sum over all k-points
        ikarray = numpy.array(range(self.n_k))
        for ik in mpi.slice_array(ikarray):
            # Calculate G_w  for ik and initialize A_kw
            G_w = self.lattice_gf(ik, mu, iw_or_w="w", beta=beta,
                                  broadening=broadening, mesh=mesh, with_Sigma=with_Sigma)
            A_kw = [numpy.zeros((self.n_orbitals[ik][isp], self.n_orbitals[ik][isp], n_om), dtype=numpy.complex_)
                    for isp in range(n_inequiv_spin_blocks)]

            for isp in range(n_inequiv_spin_blocks):
                # copy data from G_w (swapaxes is used to have omega in the 3rd
                # dimension)
                A_kw[isp] = copy.deepcopy(G_w[self.spin_block_names[self.SO][
                                          isp]].data.swapaxes(0, 1).swapaxes(1, 2))
                # calculate A(k,w) for each frequency
                for iw in xrange(n_om):
                    A_kw[isp][:, :, iw] = -1.0 / (2.0 * numpy.pi * 1j) * (
                        A_kw[isp][:, :, iw] - numpy.conjugate(numpy.transpose(A_kw[isp][:, :, iw])))

                b_min = max(self.band_window[isp][
                            ik, 0], self.band_window_optics[isp][ik, 0])
                b_max = min(self.band_window[isp][
                            ik, 1], self.band_window_optics[isp][ik, 1])
                A_i = slice(
                    b_min - self.band_window[isp][ik, 0], b_max - self.band_window[isp][ik, 0] + 1)
                v_i = slice(b_min - self.band_window_optics[isp][
                            ik, 0], b_max - self.band_window_optics[isp][ik, 0] + 1)

                # loop over all symmetries
                for R in self.rot_symmetries:
                    # get transformed velocity under symmetry R
                    vel_R = copy.deepcopy(self.velocities_k[isp][ik])
                    for nu1 in range(self.band_window_optics[isp][ik, 1] - self.band_window_optics[isp][ik, 0] + 1):
                        for nu2 in range(self.band_window_optics[isp][ik, 1] - self.band_window_optics[isp][ik, 0] + 1):
                            vel_R[nu1][nu2][:] = numpy.dot(
                                R, vel_R[nu1][nu2][:])

                    # calculate Gamma_w for each direction from the velocities
                    # vel_R and the spectral function A_kw
                    for direction in self.directions:
                        for iw in xrange(n_om):
                            for iq in range(len(self.Om_mesh)):
                                if(iw + iOm_mesh[iq] >= n_om or self.omega[iw] < -self.Om_mesh[iq] + energy_window[0] or self.omega[iw] > self.Om_mesh[iq] + energy_window[1]):
                                    continue

                                self.Gamma_w[direction][iq, iw] += (numpy.dot(numpy.dot(numpy.dot(vel_R[v_i, v_i, dir_to_int[direction[0]]],
                                                                                                  A_kw[isp][A_i, A_i, iw + iOm_mesh[iq]]), vel_R[v_i, v_i, dir_to_int[direction[1]]]),
                                                                              A_kw[isp][A_i, A_i, iw]).trace().real * self.bz_weights[ik])

        for direction in self.directions:
            self.Gamma_w[direction] = (mpi.all_reduce(mpi.world, self.Gamma_w[direction], lambda x, y: x + y)
                                       / self.cellvolume(self.lattice_type, self.lattice_constants, self.lattice_angles)[1] / self.n_symmetries)
Ejemplo n.º 22
0
n_iw = 1025
n_tau = 10001

p = {}
p["max_time"] = -1
p["random_name"] = ""
p["random_seed"] = 123 * mpi.rank + 567
p["length_cycle"] = 50
p["n_warmup_cycles"] = 50000/10
p["n_cycles"] = 3200000/10
p["use_norm_as_weight"] = True
p["measure_density_matrix"] = False

results_file_name = "kanamori_offdiag." + ("qn." if use_qn else "") + "h5"

mpi.report("Welcome to Kanamori (off-diagonal) benchmark.")

gf_struct = set_operator_structure(spin_names,orb_names,True)
mkind = get_mkind(True,None)

# Hamiltonian
H = h_int_kanamori(spin_names,orb_names,
                   np.array([[0,U-3*J],[U-3*J,0]]),
                   np.array([[U,U-2*J],[U-2*J,U]]),
                   J,True)

if use_qn:
    QN = [sum([n(*mkind("up",o)) for o in orb_names],Operator()),
          sum([n(*mkind("dn",o)) for o in orb_names],Operator())]
    for o in orb_names:
        dn = n(*mkind("up",o)) - n(*mkind("dn",o))
Ejemplo n.º 23
0
Archivo: bse.py Proyecto: mzingl/tprf
def solve_lattice_bse(g_wk, gamma_wnn, tail_corr_nwf=None):
    r""" Compute the generalized lattice susceptibility 
    :math:`\chi_{abcd}(\omega, \mathbf{k})` using the Bethe-Salpeter 
    equation (BSE).

    Parameters
    ----------

    g_wk : Single-particle Green's function :math:`G_{ab}(\omega, \mathbf{k})`.
    gamma_wnn : Local particle-hole vertex function 
                :math:`\Gamma_{abcd}(\omega, \nu, \nu')`
    tail_corr_nwf : Number of fermionic freqiencies to use in the 
                    tail correction of the sum over fermionic frequencies.

    Returns
    -------

    chi0_wk : Generalized lattice susceptibility
              :math:`\chi_{abcd}(\omega, \mathbf{k})`
    """

    fmesh_g = g_wk.mesh.components[0]
    kmesh = g_wk.mesh.components[1]

    bmesh = gamma_wnn.mesh.components[0]
    fmesh = gamma_wnn.mesh.components[1]

    nk = len(kmesh)
    nw = (len(bmesh) + 1) / 2
    nwf = len(fmesh) / 2
    nwf_g = len(fmesh_g) / 2

    if mpi.is_master_node():
        print tprf_banner(), "\n"
        print 'Lattcie BSE with local vertex approximation.\n'
        print 'nk    =', nk
        print 'nw    =', nw
        print 'nwf   =', nwf
        print 'nwf_g =', nwf_g
        print 'tail_corr_nwf =', tail_corr_nwf
        print

    if tail_corr_nwf is None:
        tail_corr_nwf = nwf

    mpi.report('--> chi0_wnk_tail_corr')
    chi0_wnk_tail_corr = get_chi0_wnk(g_wk, nw=nw, nwf=tail_corr_nwf)

    mpi.report('--> trace chi0_wnk_tail_corr (WARNING! NO TAIL FIT. FIXME!)')
    chi0_wk_tail_corr = chi0q_sum_nu_tail_corr_PH(chi0_wnk_tail_corr)
    #chi0_wk_tail_corr = chi0q_sum_nu(chi0_wnk_tail_corr)

    mpi.barrier()
    mpi.report('B1 ' +
               str(chi0_wk_tail_corr[Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    mpi.report('--> chi0_wnk_tail_corr to chi0_wnk')
    if tail_corr_nwf != nwf:
        mpi.report('--> fixed_fermionic_window_python_wnk')
        chi0_wnk = fixed_fermionic_window_python_wnk(chi0_wnk_tail_corr,
                                                     nwf=nwf)
    else:
        chi0_wnk = chi0_wnk_tail_corr.copy()

    del chi0_wnk_tail_corr

    mpi.barrier()
    mpi.report('C ' + str(chi0_wnk[Idx(0), Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    mpi.report('--> trace chi0_wnk')
    chi0_wk = chi0q_sum_nu(chi0_wnk)

    mpi.barrier()
    mpi.report('D ' + str(chi0_wk[Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    dchi_wk = chi0_wk_tail_corr - chi0_wk

    chi0_kw = Gf(mesh=MeshProduct(kmesh, bmesh),
                 target_shape=chi0_wk_tail_corr.target_shape)
    chi0_kw.data[:] = chi0_wk_tail_corr.data.swapaxes(0, 1)

    del chi0_wk
    del chi0_wk_tail_corr

    assert (chi0_wnk.mesh.components[0] == bmesh)
    assert (chi0_wnk.mesh.components[1] == fmesh)
    assert (chi0_wnk.mesh.components[2] == kmesh)

    # -- Lattice BSE calc with built in trace
    mpi.report('--> chi_kw from BSE')
    #mpi.report('DEBUG BSE INACTIVE'*72)
    chi_kw = chiq_sum_nu_from_chi0q_and_gamma_PH(chi0_wnk, gamma_wnn)
    #chi_kw = chi0_kw.copy()

    mpi.barrier()
    mpi.report('--> chi_kw from BSE (done)')

    del chi0_wnk

    mpi.report('--> chi_kw tail corrected (using chi0_wnk)')
    for k in kmesh:
        chi_kw[
            k, :] += dchi_wk[:,
                             k]  # -- account for high freq of chi_0 (better than nothing)

    del dchi_wk

    mpi.report('--> solve_lattice_bse, done.')

    return chi_kw, chi0_kw
Ejemplo n.º 24
0
def imtime_bubble_chi0_wk(g_wk, nw=1):

    wmesh, kmesh = g_wk.mesh.components

    norb = g_wk.target_shape[0]
    beta = wmesh.beta
    nw_g = len(wmesh)
    nk = len(kmesh)

    ntau = 4 * nw_g
    ntot = np.prod(nk) * norb**4 + np.prod(nk) * (nw_g + ntau) * norb**2
    nbytes = ntot * np.complex128().nbytes
    ngb = nbytes / 1024.**3

    if mpi.is_master_node():
        print tprf_banner(), "\n"
        print 'beta  =', beta
        print 'nk    =', nk
        print 'nw    =', nw_g
        print 'norb  =', norb
        print
        print 'Approx. Memory Utilization: %2.2f GB\n' % ngb

    mpi.report('--> fourier_wk_to_wr')
    g_wr = fourier_wk_to_wr(g_wk)
    del g_wk

    mpi.report('--> fourier_wr_to_tr')
    g_tr = fourier_wr_to_tr(g_wr)
    del g_wr

    if nw == 1:
        mpi.report('--> chi0_w0r_from_grt_PH (bubble in tau & r)')
        chi0_wr = chi0_w0r_from_grt_PH(g_tr)
        del g_tr
    else:
        mpi.report('--> chi0_tr_from_grt_PH (bubble in tau & r)')
        chi0_tr = chi0_tr_from_grt_PH(g_tr)
        del g_tr

        mpi.report('--> chi_wr_from_chi_tr')
        chi0_wr = chi_wr_from_chi_tr(chi0_tr, nw=nw)
        del chi_tr

    mpi.report('--> chi_wk_from_chi_wr (r->k)')
    chi0_wk = chi_wk_from_chi_wr(chi0_wr)
    del chi0_wr

    return chi0_wk
Ejemplo n.º 25
0
#!/bin/env pytriqs

import pytriqs.utility.mpi as mpi
from pytriqs.archive import HDFArchive
from triqs_cthyb import SolverCore
from pytriqs.operators import Operator, n
from pytriqs.gf import Gf, inverse, iOmega_n

mpi.report("Welcome to nonint (non-interacting many-band systems) test.")
mpi.report("This test is aimed to reveal excessive state truncation issues.")

beta = 40.0
N_max = 10

n_iw = 1025
n_tau = 10001

p = {}
p["max_time"] = -1
p["random_name"] = ""
p["random_seed"] = 123 * mpi.rank + 567
p["length_cycle"] = 50
p["n_warmup_cycles"] = 50000
p["n_cycles"] = 1200000

for modes in range(1,N_max+1):
    V = [0.2]*modes
    e = [-0.2]*modes

    #gf_struct = {str(n):[0] for n in range(0,len(V))}
    gf_struct = [ [str(bidx), [0]] for bidx in range(0,len(V)) ]
Ejemplo n.º 26
0
def read_config(config_file):
    """
    Reads the config file (default dmft_config.ini) it consists out of 2
    sections. Comments are in general possible with with the delimiters ';' or
    '#'. However, this is only possible in the beginning of a line not within
    the line!

    Parameters
    ----------

    seedname : str or list of str
                seedname for h5 archive or for multiple if calculations should be connected
    jobname : str or list of str, optional, default=seedname
                one or multiple jobnames specifying the output directories
    csc : bool, optional, default=False
                are we doing a CSC calculation?
    plo_cfg : str, optional, default='plo.cfg'
                config file for PLOs for the converter
    h_int_type : int
                interaction type # 1=dens-dens 2=kanamori 3=full-slater
    U :  float or comma seperated list of floats
                U values for impurities if only one value is given, the same U is assumed for all impurities
    J :  float or comma seperated list of floats
                J values for impurities if only one value is given, the same J is assumed for all impurities
    beta : float
                inverse temperature for Greens function etc
    n_iter_dmft_first : int, optional, default = 10
                number of iterations in first dmft cycle to converge dmft solution
    n_iter_dmft_per : int, optional, default = 2
                number of iterations per dmft step in CSC calculations
    n_iter_dmft : int
            number of iterations per dmft cycle after first cycle
    n_iter_dft : int, optional, default = 8
                number of dft iterations per cycle
    dc_type : int
                1: held formula, needs to be used with slater-kanamori h_int_type=2
    prec_mu : float
                general precision for determining the chemical potential at any time calc_mu is called
    dc_dmft : bool
                DC with DMFT occupation in each iteration -> True
                DC with DFT occupations after each DFT cycle -> False
    n_LegCoeff : int, needed if measure_g_l=True
                number of legendre coefficients
    h5_save_freq : int, optional default=5
                how often is the output saved to the h5 archive
    magnetic : bool, optional, default=False
                are we doing a magnetic calculations? If yes put magnetic to True
    magmom : list of float seperated by comma, optional default=[]
                init magnetic moments if magnetic is on. length must be #imps.
                This will be used as percentage factor for each imp in the initial
                self energy, pos sign for up (1+fac)*sigma, negative sign for down
                (1-fac)*sigma channel
    enforce_off_diag : bool, optional, default=False
                enforce off diagonal elements in block structure finder
    h_field : float, optional, default=0.0
                magnetic field
    sigma_mix : float, optional, default=1.0
                mixing sigma with previous iteration sigma for better convergency. 1.0 means no mixing
    dc : bool, optional, default=True
                dc correction on yes or no?
    calc_energies : bool, optional, default=True
                calc energies explicitly within the dmft loop
    block_threshold : float, optional, default=1e-05
                threshold for finding block structures in the input data (off-diag yes or no)
    spin_names : list of str, optional, default=up,down
                names for spin channels, usually no need to specifiy this
    load_sigma : bool, optional, default=False
                load a old sigma from h5 file
    path_to_sigma : str, needed if load_sigma is true
                path to h5 file from which the sigma should be loaded
    load_sigma_iter : int, optional, default= last iteration
                load the sigma from a specific iteration if wanted
    occ_conv_crit : float, optional, default= -1
                stop the calculation if a certain treshold is reached in the last occ_conv_it iterations
    occ_conv_it : int, optional, default= 10
                how many iterations should be considered for convergence?
    sampling_iterations : int, optional, default = 0
                for how many iterations should the solution sampled after the CSC loop is converged
    fixed_mu_value : float, optional default -> set fixed_mu = False
                fixed mu calculations
    store_dft_eigenvals : bool, optional, default= False
                stores the dft eigenvals from LOCPROJ file in h5 archive
    rm_complex : bool, optional, default=False
                removes the complex parts from G0 before the solver runs
    afm_order : bool, optional, default=False
                copy self energies instead of solving explicitly for afm order
    set_rot : string, optional, default='none'
                use density_mat_dft to diagonalize occupations = 'den'
                use hloc_dft to diagonalize occupations = 'hloc'

    __Solver Parameters:__
    ----------
    length_cycle : int
                length of each cycle; number of sweeps before measurement is taken
    n_warmup_cycles : int
                number of warmup cycles before real measurement sets in
    n_cycles_tot : int
                total number of sweeps
    measure_g_l : bool
                measure Legendre Greens function
    max_time : int, optional, default=-1
                maximum amount the solver is allowed to spend in eacht iteration
    imag_threshold : float, optional, default= 10e-15
                thresold for imag part of G0_tau. be warned if symmetries are off in projection scheme imag parts can occur in G0_tau
    measure_g_tau : bool,optional, default=True
                should the solver measure G(tau)?
    move_double : bool, optional, default=True
                double moves in solver
    perform_tail_fit : bool, optional, default=False
                tail fitting if legendre is off?
    fit_max_moment : int, needed if perform_tail_fit = true
                max moment to be fitted
    fit_min_n : int, needed if perform_tail_fit = true
                number of start matsubara frequency to start with
    fit_max_n : int, needed if perform_tail_fit = true
                number of highest matsubara frequency to fit

    __Returns:__
    general_parameters : dict

    solver_parameters : dict

    """
    config = cp.ConfigParser()
    config.read(config_file)

    solver_parameters = {}
    general_parameters = {}

    # required parameters
    general_parameters['seedname'] = map(
        str,
        str(config['general']['seedname'].replace(" ", "")).split(','))
    general_parameters['h_int_type'] = int(config['general']['h_int_type'])
    general_parameters['U'] = map(float,
                                  str(config['general']['U']).split(','))
    general_parameters['J'] = map(float,
                                  str(config['general']['J']).split(','))
    general_parameters['beta'] = float(config['general']['beta'])
    general_parameters['n_iter_dmft'] = int(config['general']['n_iter_dmft'])
    general_parameters['dc_type'] = int(config['general']['dc_type'])
    general_parameters['prec_mu'] = float(config['general']['prec_mu'])
    general_parameters['dc_dmft'] = config['general'].getboolean('dc_dmft')

    # if csc we need the following input Parameters
    if 'csc' in config['general']:

        general_parameters['csc'] = config['general'].getboolean('csc')

        if 'n_iter_dmft_first' in config['general']:
            general_parameters['n_iter_dmft_first'] = int(
                config['general']['n_iter_dmft_first'])
        else:
            general_parameters['n_iter_dmft_first'] = 10

        if 'n_iter_dmft_per' in config['general']:
            general_parameters['n_iter_dmft_per'] = int(
                config['general']['n_iter_dmft_per'])
        else:
            general_parameters['n_iter_dmft_per'] = 2

        if 'n_iter_dft' in config['general']:
            general_parameters['n_iter_dft'] = int(
                config['general']['n_iter_dft'])
        else:
            general_parameters['n_iter_dft'] = 6

        if 'plo_cfg' in config['general']:
            general_parameters['plo_cfg'] = str(config['general']['plo_cfg'])
        else:
            general_parameters['plo_cfg'] = 'plo.cfg'

        if general_parameters['n_iter_dmft'] < general_parameters[
                'n_iter_dmft_first']:
            mpi.report(
                '*** error: total number of iterations should be at least = n_iter_dmft_first ***'
            )
            mpi.MPI.COMM_WORLD.Abort(1)
    else:
        general_parameters['csc'] = False

    # optional stuff
    if 'jobname' in config['general']:
        general_parameters['jobname'] = map(
            str,
            str(config['general']['jobname'].replace(" ", "")).split(','))
        if len(general_parameters['jobname']) != len(
                general_parameters['seedname']):
            mpi.report('*** jobname must have same length as seedname. ***')
            mpi.MPI.COMM_WORLD.Abort(1)
    else:
        general_parameters['jobname'] = general_parameters['seedname']

    if 'h5_save_freq' in config['general']:
        general_parameters['h5_save_freq'] = int(
            config['general']['h5_save_freq'])
    else:
        general_parameters['h5_save_freq'] = 5

    if 'magnetic' in config['general']:
        general_parameters['magnetic'] = config['general'].getboolean(
            'magnetic')
    else:
        general_parameters['magnetic'] = False

    if 'magmom' in config['general']:
        general_parameters['magmom'] = map(
            float,
            str(config['general']['magmom']).split(','))
    else:
        general_parameters['magmom'] = []

    if 'h_field' in config['general']:
        general_parameters['h_field'] = float(config['general']['h_field'])
    else:
        general_parameters['h_field'] = 0.0

    if 'sigma_mix' in config['general']:
        general_parameters['sigma_mix'] = float(config['general']['sigma_mix'])
    else:
        general_parameters['sigma_mix'] = 1.0

    if 'dc' in config['general']:
        general_parameters['dc'] = config['general'].getboolean('dc')
    else:
        general_parameters['dc'] = True

    if 'calc_energies' in config['general']:
        general_parameters['calc_energies'] = config['general'].getboolean(
            'calc_energies')
    else:
        general_parameters['calc_energies'] = True

    if 'block_threshold' in config['general']:
        general_parameters['block_threshold'] = float(
            config['general']['block_threshold'])
    else:
        general_parameters['block_threshold'] = 1e-05

    if 'enforce_off_diag' in config['general']:
        general_parameters['enforce_off_diag'] = config['general'].getboolean(
            'enforce_off_diag')
    else:
        general_parameters['enforce_off_diag'] = False

    if 'spin_names' in config['general']:
        general_parameters['spin_names'] = map(
            str,
            str(config['general']['spin_names']).split(','))
    else:
        general_parameters['spin_names'] = ['up', 'down']

    if 'load_sigma' in config['general']:
        general_parameters['load_sigma'] = config['general'].getboolean(
            'load_sigma')
    else:
        general_parameters['load_sigma'] = False
    if general_parameters['load_sigma'] == True:
        general_parameters['path_to_sigma'] = str(
            config['general']['path_to_sigma'])
    if 'load_sigma_iter' in config['general']:
        general_parameters['load_sigma_iter'] = int(
            config['general']['load_sigma_iter'])
    else:
        general_parameters['load_sigma_iter'] = -1

    if 'occ_conv_crit' in config['general']:
        general_parameters['occ_conv_crit'] = float(
            config['general']['occ_conv_crit'])
    else:
        general_parameters['occ_conv_crit'] = -1
    if 'occ_conv_it' in config['general']:
        general_parameters['occ_conv_it'] = int(
            config['general']['occ_conv_it'])
    else:
        general_parameters['occ_conv_it'] = 10

    if 'sampling_iterations' in config['general']:
        general_parameters['sampling_iterations'] = int(
            config['general']['sampling_iterations'])
    else:
        general_parameters['sampling_iterations'] = 0

    if 'fixed_mu_value' in config['general']:
        general_parameters['fixed_mu_value'] = float(
            config['general']['fixed_mu_value'])
        general_parameters['fixed_mu'] = True
    else:
        general_parameters['fixed_mu'] = False
    if 'dft_mu' in config['general']:
        general_parameters['dft_mu'] = float(config['general']['dft_mu'])
    else:
        general_parameters['dft_mu'] = 0.0

    if 'store_dft_eigenvals' in config['general']:
        general_parameters['store_dft_eigenvals'] = config[
            'general'].getboolean('store_dft_eigenvals')
    else:
        general_parameters['store_dft_eigenvals'] = False

    if 'rm_complex' in config['general']:
        general_parameters['rm_complex'] = config['general'].getboolean(
            'rm_complex')
    else:
        general_parameters['rm_complex'] = False

    if 'afm_order' in config['general']:
        general_parameters['afm_order'] = config['general'].getboolean(
            'afm_order')
    else:
        general_parameters['afm_order'] = False

    if 'set_rot' in config['general']:
        general_parameters['set_rot'] = str(config['general']['set_rot'])
    else:
        general_parameters['set_rot'] = 'none'

    # solver related parameters
    # required parameters
    solver_parameters["length_cycle"] = int(
        config['solver_parameters']['length_cycle'])
    solver_parameters["n_warmup_cycles"] = int(
        config['solver_parameters']['n_warmup_cycles'])
    solver_parameters["n_cycles"] = int(
        float(config['solver_parameters']['n_cycles_tot']) / (mpi.size))
    solver_parameters['measure_G_l'] = config['solver_parameters'].getboolean(
        'measure_g_l')

    # optional stuff
    if 'max_time' in config['solver_parameters']:
        solver_parameters["max_time"] = int(
            config['solver_parameters']['max_time'])

    if 'imag_threshold' in config['solver_parameters']:
        solver_parameters["imag_threshold"] = float(
            config['solver_parameters']['imag_threshold'])

    if 'measure_g_tau' in config['solver_parameters']:
        solver_parameters["measure_G_tau"] = config[
            'solver_parameters'].getboolean('measure_g_tau')
    else:
        solver_parameters["measure_G_tau"] = True

    if 'move_double' in config['solver_parameters']:
        solver_parameters["move_double"] = config[
            'solver_parameters'].getboolean('move_double')
    else:
        solver_parameters["move_double"] = True

    #tailfitting only if legendre is off
    if solver_parameters['measure_G_l'] == True:
        # little workaround since #leg coefficients is not directly a solver parameter
        general_parameters["n_LegCoeff"] = int(
            config['solver_parameters']['n_LegCoeff'])
        solver_parameters["perform_tail_fit"] = False
    else:
        if 'perform_tail_fit' in config['solver_parameters']:
            solver_parameters["perform_tail_fit"] = config[
                'solver_parameters'].getboolean('perform_tail_fit')
        else:
            solver_parameters["perform_tail_fit"] = False
    if solver_parameters["perform_tail_fit"] == True:
        solver_parameters["fit_max_moment"] = int(
            config['solver_parameters']['fit_max_moment'])
        solver_parameters["fit_min_n"] = int(
            config['solver_parameters']['fit_min_n'])
        solver_parameters["fit_max_n"] = int(
            config['solver_parameters']['fit_max_n'])

    return general_parameters, solver_parameters
Ejemplo n.º 27
0
    def convert_bands_input(self, bands_subgrp='SumK_LDA_Bands'):
        """
        Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the
        HDF5.
        """

        if not (mpi.is_master_node()): return

        self.bands_subgrp = bands_subgrp
        mpi.report("Reading bands input from %s..." % self.band_file)

        R = read_fortran_file(self.band_file)
        try:
            n_k = int(R.next())

            # read the list of n_orbitals for all k points
            n_orbitals = numpy.zeros([n_k, self.n_spin_blocs], numpy.int)
            for isp in range(self.n_spin_blocs):
                for ik in xrange(n_k):
                    n_orbitals[ik, isp] = int(R.next())

            # Initialise the projectors:
            #proj_mat = [ [ [numpy.zeros([self.corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
            #                for icrsh in range (self.n_corr_shells)]
            #               for isp in range(self.n_spin_blocs)]
            #             for ik in range(n_k) ]
            proj_mat = numpy.zeros([
                n_k, self.n_spin_blocs, self.n_corr_shells,
                max(numpy.array(self.corr_shells)[:, 3]),
                max(n_orbitals)
            ], numpy.complex_)

            # Read the projectors from the file:
            for ik in xrange(n_k):
                for icrsh in range(self.n_corr_shells):
                    no = self.corr_shells[icrsh][3]
                    # first Real part for BOTH spins, due to conventions in dmftproj:
                    for isp in range(self.n_spin_blocs):
                        for i in xrange(no):
                            for j in xrange(n_orbitals[ik, isp]):
                                proj_mat[ik, isp, icrsh, i, j] = R.next()
                    # now Imag part:
                    for isp in range(self.n_spin_blocs):
                        for i in xrange(no):
                            for j in xrange(n_orbitals[ik, isp]):
                                proj_mat[ik, isp, icrsh, i, j] += 1j * R.next()

            #hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
            #             for isp in range(self.n_spin_blocs)] for ik in xrange(n_k) ]
            hopping = numpy.zeros(
                [n_k, self.n_spin_blocs,
                 max(n_orbitals),
                 max(n_orbitals)], numpy.complex_)

            # Grab the H
            # we use now the convention of a DIAGONAL Hamiltonian!!!!
            for isp in range(self.n_spin_blocs):
                for ik in xrange(n_k):
                    no = n_orbitals[ik, isp]
                    for i in xrange(no):
                        hopping[ik, isp, i, i] = R.next() * self.energy_unit

            # now read the partial projectors:
            n_parproj = [int(R.next()) for i in range(self.n_shells)]
            n_parproj = numpy.array(n_parproj)

            # Initialise P, here a double list of matrices:
            #proj_mat_pc = [ [ [ [numpy.zeros([self.shells[ish][3], n_orbitals[ik][isp]], numpy.complex_)
            #                     for ir in range(n_parproj[ish])]
            #                    for ish in range (self.n_shells) ]
            #                  for isp in range(self.n_spin_blocs) ]
            #                for ik in range(n_k) ]
            proj_mat_pc = numpy.zeros([
                n_k, self.n_spin_blocs, self.n_shells,
                max(n_parproj),
                max(numpy.array(self.shells)[:, 3]),
                max(n_orbitals)
            ], numpy.complex_)

            for ish in range(self.n_shells):

                for ik in xrange(n_k):
                    for ir in range(n_parproj[ish]):
                        for isp in range(self.n_spin_blocs):

                            for i in xrange(
                                    self.shells[ish][3]):  # read real part:
                                for j in xrange(n_orbitals[ik, isp]):
                                    proj_mat_pc[ik, isp, ish, ir, i,
                                                j] = R.next()

                            for i in xrange(self.shells[ish]
                                            [3]):  # read imaginary part:
                                for j in xrange(n_orbitals[ik, isp]):
                                    proj_mat_pc[ik, isp, ish, ir, i,
                                                j] += 1j * R.next()

        except StopIteration:  # a more explicit error if the file is corrupted.
            raise "SumkLDA : reading file HMLT_file failed!"

        R.close()
        # reading done!

        #-----------------------------------------
        # Store the input into HDF5:
        ar = HDFArchive(self.hdf_file, 'a')
        if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp)
        # The subgroup containing the data. If it does not exist, it is created.
        # If it exists, the data is overwritten!!!
        thingstowrite = [
            'n_k', 'n_orbitals', 'proj_mat', 'hopping', 'n_parproj',
            'proj_mat_pc'
        ]
        for it in thingstowrite:
            exec "ar['%s']['%s'] = %s" % (self.bands_subgrp, it, it)

        #ar[self.bands_subgrp]['n_k'] = n_k
        #ar[self.bands_subgrp]['n_orbitals'] = n_orbitals
        #ar[self.bands_subgrp]['proj_mat'] = proj_mat
        #self.proj_mat = proj_mat
        #self.n_orbitals = n_orbitals
        #self.n_k = n_k
        #self.hopping = hopping
        del ar
Ejemplo n.º 28
0
    def read_symmetry_input(self, orbits, symm_file, symm_subgrp, SO, SP):
        """
        Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc.
        """

        if not (mpi.is_master_node()): return

        mpi.report("Reading symmetry input from %s..."%symm_file)

        n_orbits = len(orbits)
        R=read_fortran_file(symm_file)

        try:
            n_s = int(R.next())           # Number of symmetry operations
            n_atoms = int(R.next())       # number of atoms involved
            perm = [ [int(R.next()) for i in xrange(n_atoms)] for j in xrange(n_s) ]    # list of permutations of the atoms
            if SP: 
                time_inv = [ int(R.next()) for j in xrange(n_s) ]           # timeinversion for SO xoupling
            else:
                time_inv = [ 0 for j in xrange(n_s) ] 

            # Now read matrices:
            mat = []  
            for in_s in xrange(n_s):
                
                mat.append( [ numpy.zeros([orbits[orb][3], orbits[orb][3]],numpy.complex_) for orb in xrange(n_orbits) ] )
                for orb in range(n_orbits):
                    for i in xrange(orbits[orb][3]):
                        for j in xrange(orbits[orb][3]):
                            mat[in_s][orb][i,j] = R.next()            # real part
                    for i in xrange(orbits[orb][3]):
                        for j in xrange(orbits[orb][3]):
                            mat[in_s][orb][i,j] += 1j * R.next()      # imaginary part

            # determine the inequivalent shells:
            #SHOULD BE FINALLY REMOVED, PUT IT FOR ALL ORBITALS!!!!!
            #self.inequiv_shells(orbits)
            mat_tinv = [numpy.identity(orbits[orb][3],numpy.complex_)
                        for orb in range(n_orbits)]

            if ((SO==0) and (SP==0)):
                # here we need an additional time inversion operation, so read it:
                for orb in range(n_orbits):
                    for i in xrange(orbits[orb][3]):
                        for j in xrange(orbits[orb][3]):
                            mat_tinv[orb][i,j] = R.next()            # real part
                    for i in xrange(orbits[orb][3]):
                        for j in xrange(orbits[orb][3]):
                            mat_tinv[orb][i,j] += 1j * R.next()      # imaginary part
                


        except StopIteration : # a more explicit error if the file is corrupted.
	    raise "Symmetry : reading file failed!"
        
        R.close()

        # Save it to the HDF:
        ar=HDFArchive(self.hdf_file,'a')
        if not (symm_subgrp in ar): ar.create_group(symm_subgrp)
        thingstowrite = ['n_s','n_atoms','perm','orbits','SO','SP','time_inv','mat','mat_tinv']
        for it in thingstowrite: exec "ar['%s']['%s'] = %s"%(symm_subgrp,it,it)
        del ar
Ejemplo n.º 29
0
def run_all(vasp_pid, dmft_cycle, cfg_file, n_iter):
    """
    """
    mpi.report("  Waiting for VASP lock to appear...")
    while not is_vasp_lock_present():
        time.sleep(1)

    vasp_running = True

    iter = 0
    while vasp_running:
        if debug: print bcolors.RED + "rank %s" % (mpi.rank) + bcolors.ENDC
        mpi.report("  Waiting for VASP lock to disappear...")
        mpi.barrier()
        while is_vasp_lock_present():
            time.sleep(1)
            #            if debug: print bcolors.YELLOW + " waiting: rank %s"%(mpi.rank) + bcolors.ENDC
            if not is_vasp_running(vasp_pid):
                mpi.report("  VASP stopped")
                vasp_running = False
                break


# Tell VASP to stop if the maximum number of iterations is reached
        iter += 1
        if iter == n_iter:
            if mpi.is_master_node():
                print "\n  Maximum number of iterations reached."
                print "  Aborting VASP iterations...\n"
                f_stop = open('STOPCAR', 'wt')
                f_stop.write("LABORT = .TRUE.\n")
                f_stop.close()

        if debug: print bcolors.MAGENTA + "rank %s" % (mpi.rank) + bcolors.ENDC
        err = 0
        exc = None
        if debug:
            print bcolors.BLUE + "plovasp: rank %s" % (mpi.rank) + bcolors.ENDC
        if mpi.is_master_node():
            converter.generate_and_output_as_text(cfg_file, vasp_dir='./')
            # Read energy from OSZICAR
            dft_energy = get_dft_energy()
        mpi.barrier()

        if debug: print bcolors.GREEN + "rank %s" % (mpi.rank) + bcolors.ENDC
        corr_energy, dft_dc = dmft_cycle()
        mpi.barrier()

        if mpi.is_master_node():
            total_energy = dft_energy + corr_energy - dft_dc
            print
            print "=" * 80
            print "  Total energy: ", total_energy
            print "  DFT energy: ", dft_energy
            print "  Corr. energy: ", corr_energy
            print "  DFT DC: ", dft_dc
            print "=" * 80
            print

        if mpi.is_master_node() and vasp_running:
            open('./vasp.lock', 'a').close()

    if mpi.is_master_node():
        total_energy = dft_energy + corr_energy - dft_dc
        with open('TOTENERGY', 'w') as f:
            f.write("  Total energy: %s\n" % (total_energy))
            f.write("  DFT energy: %s\n" % (dft_energy))
            f.write("  Corr. energy: %s\n" % (corr_energy))
            f.write("  DFT DC: %s\n" % (dft_dc))
            f.write("  Energy correction: %s\n" % (corr_energy - dft_dc))

    mpi.report("***Done")
Ejemplo n.º 30
0
    def convert_bands_input(self, bands_subgrp = 'SumK_LDA_Bands'):
        """
        Converts the input for momentum resolved spectral functions, and stores it in bands_subgrp in the
        HDF5.
        """

        if not (mpi.is_master_node()): return

        self.bands_subgrp = bands_subgrp
        mpi.report("Reading bands input from %s..."%self.band_file)

        R = read_fortran_file(self.band_file)
        try:
            n_k = int(R.next())

            # read the list of n_orbitals for all k points
            n_orbitals = numpy.zeros([n_k,self.n_spin_blocs],numpy.int)
            for isp in range(self.n_spin_blocs):
                for ik in xrange(n_k):
                    n_orbitals[ik,isp] = int(R.next())

            # Initialise the projectors:
            #proj_mat = [ [ [numpy.zeros([self.corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_) 
            #                for icrsh in range (self.n_corr_shells)] 
            #               for isp in range(self.n_spin_blocs)] 
            #             for ik in range(n_k) ]
            proj_mat = numpy.zeros([n_k,self.n_spin_blocs,self.n_corr_shells,max(numpy.array(self.corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)

            # Read the projectors from the file:
            for ik in xrange(n_k):
                for icrsh in range(self.n_corr_shells):
                    no = self.corr_shells[icrsh][3]
                    # first Real part for BOTH spins, due to conventions in dmftproj:
                    for isp in range(self.n_spin_blocs):
                        for i in xrange(no):
                            for j in xrange(n_orbitals[ik,isp]):
                                proj_mat[ik,isp,icrsh,i,j] = R.next()
                    # now Imag part:
                    for isp in range(self.n_spin_blocs):
                        for i in xrange(no):
                            for j in xrange(n_orbitals[ik,isp]):
                                proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()

            #hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_) 
            #             for isp in range(self.n_spin_blocs)] for ik in xrange(n_k) ]
            hopping = numpy.zeros([n_k,self.n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
         	    
            # Grab the H
            # we use now the convention of a DIAGONAL Hamiltonian!!!!
            for isp in range(self.n_spin_blocs):
                for ik in xrange(n_k) :
                    no = n_orbitals[ik,isp]
                    for i in xrange(no):
                        hopping[ik,isp,i,i] = R.next() * self.energy_unit

            # now read the partial projectors:
            n_parproj = [int(R.next()) for i in range(self.n_shells)]
            n_parproj = numpy.array(n_parproj)
            
            # Initialise P, here a double list of matrices:
            #proj_mat_pc = [ [ [ [numpy.zeros([self.shells[ish][3], n_orbitals[ik][isp]], numpy.complex_) 
            #                     for ir in range(n_parproj[ish])]
            #                    for ish in range (self.n_shells) ]
            #                  for isp in range(self.n_spin_blocs) ]
            #                for ik in range(n_k) ]
            proj_mat_pc = numpy.zeros([n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max(numpy.array(self.shells)[:,3]),max(n_orbitals)],numpy.complex_)


            for ish in range(self.n_shells):
               
                for ik in xrange(n_k):
                    for ir in range(n_parproj[ish]):
                        for isp in range(self.n_spin_blocs):
                                    
                            for i in xrange(self.shells[ish][3]):    # read real part:
                                for j in xrange(n_orbitals[ik,isp]):
                                    proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
                            
                            for i in xrange(self.shells[ish][3]):    # read imaginary part:
                                for j in xrange(n_orbitals[ik,isp]):
                                    proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()

        except StopIteration : # a more explicit error if the file is corrupted.
            raise "SumkLDA : reading file HMLT_file failed!"

        R.close()
        # reading done!

        #-----------------------------------------
        # Store the input into HDF5:
        ar = HDFArchive(self.hdf_file,'a')
        if not (self.bands_subgrp in ar): ar.create_group(self.bands_subgrp) 
        # The subgroup containing the data. If it does not exist, it is created.
        # If it exists, the data is overwritten!!!
        thingstowrite = ['n_k','n_orbitals','proj_mat','hopping','n_parproj','proj_mat_pc']
        for it in thingstowrite: exec "ar['%s']['%s'] = %s"%(self.bands_subgrp,it,it)

        #ar[self.bands_subgrp]['n_k'] = n_k
        #ar[self.bands_subgrp]['n_orbitals'] = n_orbitals
        #ar[self.bands_subgrp]['proj_mat'] = proj_mat
        #self.proj_mat = proj_mat
        #self.n_orbitals = n_orbitals
        #self.n_k = n_k
        #self.hopping = hopping
        del ar
Ejemplo n.º 31
0
    def convert_parproj_input(self, par_proj_subgrp='SumK_LDA_ParProj', symm_par_subgrp='SymmPar'):
        """
        Reads the input for the partial charges projectors from case.parproj, and stores it in the symm_par_subgrp
        group in the HDF5.
        """

        if not (mpi.is_master_node()): return

        self.par_proj_subgrp = par_proj_subgrp
        self.symm_par_subgrp = symm_par_subgrp

        mpi.report("Reading parproj input from %s..."%self.parproj_file)

        dens_mat_below = [ [numpy.zeros([self.shells[ish][3],self.shells[ish][3]],numpy.complex_) for ish in range(self.n_shells)] 
                           for isp in range(self.n_spin_blocs) ]

        R = read_fortran_file(self.parproj_file)
        #try:

        n_parproj = [int(R.next()) for i in range(self.n_shells)]
        n_parproj = numpy.array(n_parproj)
                
        # Initialise P, here a double list of matrices:
        #proj_mat_pc = [ [ [ [numpy.zeros([self.shells[ish][3], self.n_orbitals[ik][isp]], numpy.complex_) 
        #                     for ir in range(n_parproj[ish])]
        #                    for ish in range (self.n_shells) ]
        #                  for isp in range(self.n_spin_blocs) ]
        #                for ik in range(self.n_k) ]
        
        proj_mat_pc = numpy.zeros([self.n_k,self.n_spin_blocs,self.n_shells,max(n_parproj),max(numpy.array(self.shells)[:,3]),max(self.n_orbitals)],numpy.complex_)
        
        rot_mat_all = [numpy.identity(self.shells[ish][3],numpy.complex_) for ish in xrange(self.n_shells)]
        rot_mat_all_time_inv = [0 for i in range(self.n_shells)]

        for ish in range(self.n_shells):
            #print ish   
            # read first the projectors for this orbital:
            for ik in xrange(self.n_k):
                for ir in range(n_parproj[ish]):
                    for isp in range(self.n_spin_blocs):
                                    
                        for i in xrange(self.shells[ish][3]):    # read real part:
                            for j in xrange(self.n_orbitals[ik][isp]):
                                proj_mat_pc[ik,isp,ish,ir,i,j] = R.next()
                            
                    for isp in range(self.n_spin_blocs):
                        for i in xrange(self.shells[ish][3]):    # read imaginary part:
                            for j in xrange(self.n_orbitals[ik][isp]):
                                proj_mat_pc[ik,isp,ish,ir,i,j] += 1j * R.next()
                                        
                    
            # now read the Density Matrix for this orbital below the energy window:
            for isp in range(self.n_spin_blocs):
                for i in xrange(self.shells[ish][3]):    # read real part:
                    for j in xrange(self.shells[ish][3]):
                        dens_mat_below[isp][ish][i,j] = R.next()
            for isp in range(self.n_spin_blocs):
                for i in xrange(self.shells[ish][3]):    # read imaginary part:
                    for j in xrange(self.shells[ish][3]):
                        dens_mat_below[isp][ish][i,j] += 1j * R.next()
                if (self.SP==0): dens_mat_below[isp][ish] /= 2.0

            # Global -> local rotation matrix for this shell:
            for i in xrange(self.shells[ish][3]):    # read real part:
                for j in xrange(self.shells[ish][3]):
                    rot_mat_all[ish][i,j] = R.next()
            for i in xrange(self.shells[ish][3]):    # read imaginary part:
                for j in xrange(self.shells[ish][3]):
                    rot_mat_all[ish][i,j] += 1j * R.next()
                    
            #print Dens_Mat_below[0][ish],Dens_Mat_below[1][ish]
            
            if (self.SP):
                rot_mat_all_time_inv[ish] = int(R.next())

        #except StopIteration : # a more explicit error if the file is corrupted.
        #    raise "Wien2kConverter: reading file for Projectors failed!"
        R.close()

        #-----------------------------------------
        # Store the input into HDF5:
        ar = HDFArchive(self.hdf_file,'a')
        if not (self.par_proj_subgrp in ar): ar.create_group(self.par_proj_subgrp) 
        # The subgroup containing the data. If it does not exist, it is created.
        # If it exists, the data is overwritten!!!
        thingstowrite = ['dens_mat_below','n_parproj','proj_mat_pc','rot_mat_all','rot_mat_all_time_inv']
        for it in thingstowrite: exec "ar['%s']['%s'] = %s"%(self.par_proj_subgrp,it,it)
        del ar

        # Symmetries are used, 
        # Now do the symmetries for all orbitals:
        self.read_symmetry_input(orbits=self.shells,symm_file=self.symmpar_file,symm_subgrp=self.symm_par_subgrp,SO=self.SO,SP=self.SP)
Ejemplo n.º 32
0
    def convert_dmft_input(self, first_real_part_matrix = True, only_upper_triangle = False, weights_in_file = False):
        """
        Reads the input files, and stores the data in the HDFfile
        """
        
                   
        if not (mpi.is_master_node()): return # do it only on master:
        mpi.report("Reading input from %s..."%self.lda_file)

        # Read and write only on Master!!!
        # R is a generator : each R.Next() will return the next number in the file
        R = Read_Fortran_File(self.lda_file)
        try:
            energy_unit = 1.0                              # the energy conversion factor is 1.0, we assume eV in files
            n_k = int(R.next())                            # read the number of k points
            k_dep_projection = 0                          
            SP = 0                                        # no spin-polarision
            SO = 0                                        # no spin-orbit 
            charge_below = 0.0                            # total charge below energy window is set to 0
            density_required = R.next()                   # density required, for setting the chemical potential
            symm_op = 0                                   # No symmetry groups for the k-sum

            # the information on the non-correlated shells is needed for defining dimension of matrices:
            n_shells = int(R.next())                      # number of shells considered in the Wanniers
                                                          # corresponds to index R in formulas
            # now read the information about the shells:
            shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ]    # reads iatom, sort, l, dim

            n_corr_shells = int(R.next())                 # number of corr. shells (e.g. Fe d, Ce f) in the unit cell, 
                                                          # corresponds to index R in formulas
            # now read the information about the shells:
            corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ]    # reads iatom, sort, l, dim, SO flag, irep

            self.inequiv_shells(corr_shells)              # determine the number of inequivalent correlated shells, has to be known for further reading...


            use_rotations = 0
            rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
            rot_mat_time_inv = [0 for i in range(n_corr_shells)]
            
            # Representative representations are read from file
            n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
            dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
            
            for icrsh in range(self.n_inequiv_corr_shells):
                n_reps[icrsh] = int(R.next())   # number of representatives ("subsets"), e.g. t2g and eg
                dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])]   # dimensions of the subsets
            
            # The transformation matrix:
            # it is of dimension 2l+1, it is taken to be standard d (as in Wien2k)
            T = []
            for icrsh in range(self.n_inequiv_corr_shells):
            #for ish in xrange(self.N_inequiv_corr_shells):
                ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
                lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
                T.append(numpy.zeros([lmax,lmax],numpy.complex_))
                
                T[icrsh] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
                                       [1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
                                       [-1.0/sqrt(2.0), 0.0, 0.0, 0.0, 1.0/sqrt(2.0)],
                                       [0.0, 1.0/sqrt(2.0), 0.0, -1.0/sqrt(2.0), 0.0],
                                       [0.0, 1.0/sqrt(2.0), 0.0, 1.0/sqrt(2.0), 0.0]])

    
            # Spin blocks to be read:
            n_spin_blocks = SP + 1 - SO   # number of spins to read for Norbs and Ham, NOT Projectors
                 
        
            # define the number of N_Orbitals for all k points: it is the number of total bands and independent of k!
            n_orb = sum([ shells[ish][3] for ish in range(n_shells)])
            #n_orbitals = [ [n_orb for isp in range(n_spin_blocks)] for ik in xrange(n_k)]
            n_orbitals = numpy.ones([n_k,n_spin_blocks],numpy.int) * n_orb
            #print N_Orbitals

            # Initialise the projectors:
            #proj_mat = [ [ [numpy.zeros([corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_) 
            #                for icrsh in range (n_corr_shells)] 
            #               for isp in range(n_spin_blocks)] 
            #             for ik in range(n_k) ]
            proj_mat = numpy.zeros([n_k,n_spin_blocks,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)


            # Read the projectors from the file:
            for ik in xrange(n_k):
                for icrsh in range(n_corr_shells):
                    for isp in range(n_spin_blocks):

                        # calculate the offset:
                        offset = 0
                        no = 0
                        for i in range(n_shells):
                            if (no==0):
                                if ((shells[i][0]==corr_shells[icrsh][0]) and (shells[i][1]==corr_shells[icrsh][1])):
                                    no = corr_shells[icrsh][3]
                                else:
                                    offset += shells[i][3]

                        proj_mat[ik,isp,icrsh,0:no,offset:offset+no] = numpy.identity(no)
                    
                      
          
            # now define the arrays for weights and hopping ...
            bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k)  # w(k_index),  default normalisation 
            #hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_) 
            #             for isp in range(n_spin_blocks)] for ik in xrange(n_k) ]
            hopping = numpy.zeros([n_k,n_spin_blocks,max(n_orbitals),max(n_orbitals)],numpy.complex_)

            if (weights_in_file):
                # weights in the file
                for ik in xrange(n_k) : bz_weights[ik] = R.next()
                
            # if the sum over spins is in the weights, take it out again!!
            sm = sum(bz_weights)
            bz_weights[:] /= sm 


            # Grab the H
            for ik in xrange(n_k) :
                for isp in range(n_spin_blocks):

                    no = n_orbitals[ik,isp]
                    
                    if (first_real_part_matrix):
                        
                        for i in xrange(no):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in xrange(istart,no):
                                hopping[ik,isp,i,j] = R.next()
                
                        for i in xrange(no):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in xrange(istart,no):
                                hopping[ik,isp,i,j] += R.next() * 1j
                                if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
                
                    else:
                    
                        for i in xrange(no):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in xrange(istart,no):
                                hopping[ik,isp,i,j] = R.next()
                                hopping[ik,isp,i,j] += R.next() * 1j
                            
                                if ((only_upper_triangle)and(i!=j)): hopping[ik,isp,j,i] = hopping[ik,isp,i,j].conjugate()
            
            #keep some things that we need for reading parproj:
            self.n_shells = n_shells
            self.shells = shells
            self.n_corr_shells = n_corr_shells
            self.corr_shells = corr_shells
            self.n_spin_blocks = n_spin_blocks
            self.n_orbitals = n_orbitals
            self.n_k = n_k
            self.SO = SO
            self.SP = SP
            self.energy_unit = energy_unit
        except StopIteration : # a more explicit error if the file is corrupted.
            raise "SumK_LDA : reading file HMLT_file failed!"

        R.close()
        
        #print Proj_Mat[0]

        #-----------------------------------------
        # Store the input into HDF5:
        ar = HDFArchive(self.hdf_file,'a')
        if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp) 
        # The subgroup containing the data. If it does not exist, it is created.
        # If it exists, the data is overwritten!!!
        
        ar[self.lda_subgrp]['energy_unit'] = energy_unit
        ar[self.lda_subgrp]['n_k'] = n_k
        ar[self.lda_subgrp]['k_dep_projection'] = k_dep_projection
        ar[self.lda_subgrp]['SP'] = SP
        ar[self.lda_subgrp]['SO'] = SO
        ar[self.lda_subgrp]['charge_below'] = charge_below
        ar[self.lda_subgrp]['density_required'] = density_required
        ar[self.lda_subgrp]['symm_op'] = symm_op
        ar[self.lda_subgrp]['n_shells'] = n_shells
        ar[self.lda_subgrp]['shells'] = shells
        ar[self.lda_subgrp]['n_corr_shells'] = n_corr_shells
        ar[self.lda_subgrp]['corr_shells'] = corr_shells
        ar[self.lda_subgrp]['use_rotations'] = use_rotations
        ar[self.lda_subgrp]['rot_mat'] = rot_mat
        ar[self.lda_subgrp]['rot_mat_time_inv'] = rot_mat_time_inv
        ar[self.lda_subgrp]['n_reps'] = n_reps
        ar[self.lda_subgrp]['dim_reps'] = dim_reps
        ar[self.lda_subgrp]['T'] = T
        ar[self.lda_subgrp]['n_orbitals'] = n_orbitals
        ar[self.lda_subgrp]['proj_mat'] = proj_mat
        ar[self.lda_subgrp]['bz_weights'] = bz_weights
        ar[self.lda_subgrp]['hopping'] = hopping
        
        del ar
Ejemplo n.º 33
0
    def convert_dft_input(self,
                          first_real_part_matrix=True,
                          only_upper_triangle=False,
                          weights_in_file=False):
        """
        Reads the appropriate files and stores the data for the dft_subgrp in the hdf5 archive. 

        Parameters
        ----------
        first_real_part_matrix : boolean, optional
                                 Should all the real components for given k be read in first, followed by the imaginary parts?
        only_upper_triangle : boolean, optional
                              Should only the upper triangular part of H(k) be read in? 
        weights_in_file : boolean, optional
                          Are the k-point weights to be read in?

        """

        # Read and write only on the master node
        if not (mpi.is_master_node()):
            return
        mpi.report("Reading input from %s..." % self.dft_file)

        # R is a generator : each R.Next() will return the next number in the
        # file
        R = ConverterTools.read_fortran_file(self, self.dft_file,
                                             self.fortran_to_replace)
        try:
            # the energy conversion factor is 1.0, we assume eV in files
            energy_unit = 1.0
            # read the number of k points
            n_k = int(R.next())
            k_dep_projection = 0
            SP = 0  # no spin-polarision
            SO = 0  # no spin-orbit
            # total charge below energy window is set to 0
            charge_below = 0.0
            # density required, for setting the chemical potential
            density_required = R.next()
            symm_op = 0  # No symmetry groups for the k-sum

            # the information on the non-correlated shells is needed for
            # defining dimension of matrices:
            # number of shells considered in the Wanniers
            n_shells = int(R.next())
            # corresponds to index R in formulas
            # now read the information about the shells (atom, sort, l, dim):
            shell_entries = ['atom', 'sort', 'l', 'dim']
            shells = [{name: int(val)
                       for name, val in zip(shell_entries, R)}
                      for ish in range(n_shells)]

            # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
            n_corr_shells = int(R.next())
            # corresponds to index R in formulas
            # now read the information about the shells (atom, sort, l, dim, SO
            # flag, irep):
            corr_shell_entries = ['atom', 'sort', 'l', 'dim', 'SO', 'irep']
            corr_shells = [{
                name: int(val)
                for name, val in zip(corr_shell_entries, R)
            } for icrsh in range(n_corr_shells)]

            # determine the number of inequivalent correlated shells and maps,
            # needed for further reading
            [n_inequiv_shells, corr_to_inequiv, inequiv_to_corr
             ] = ConverterTools.det_shell_equivalence(self, corr_shells)

            use_rotations = 0
            rot_mat = [
                numpy.identity(corr_shells[icrsh]['dim'], numpy.complex_)
                for icrsh in range(n_corr_shells)
            ]
            rot_mat_time_inv = [0 for i in range(n_corr_shells)]

            # Representative representations are read from file
            n_reps = [1 for i in range(n_inequiv_shells)]
            dim_reps = [0 for i in range(n_inequiv_shells)]
            T = []
            for ish in range(n_inequiv_shells):
                # number of representatives ("subsets"), e.g. t2g and eg
                n_reps[ish] = int(R.next())
                dim_reps[ish] = [int(R.next()) for i in range(n_reps[ish])
                                 ]  # dimensions of the subsets

                # The transformation matrix:
                # is of dimension 2l+1, it is taken to be standard d (as in
                # Wien2k)
                ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
                lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
                T.append(numpy.zeros([lmax, lmax], numpy.complex_))

                T[ish] = numpy.array(
                    [[0.0, 0.0, 1.0, 0.0, 0.0],
                     [1.0 / sqrt(2.0), 0.0, 0.0, 0.0, 1.0 / sqrt(2.0)],
                     [-1.0 / sqrt(2.0), 0.0, 0.0, 0.0, 1.0 / sqrt(2.0)],
                     [0.0, 1.0 / sqrt(2.0), 0.0, -1.0 / sqrt(2.0), 0.0],
                     [0.0, 1.0 / sqrt(2.0), 0.0, 1.0 / sqrt(2.0), 0.0]])

            # Spin blocks to be read:
            # number of spins to read for Norbs and Ham, NOT Projectors
            n_spin_blocs = SP + 1 - SO

            # define the number of n_orbitals for all k points: it is the
            # number of total bands and independent of k!
            n_orbitals = numpy.ones([n_k, n_spin_blocs], numpy.int) * sum(
                [sh['dim'] for sh in shells])

            # Initialise the projectors:
            proj_mat = numpy.zeros([
                n_k, n_spin_blocs, n_corr_shells,
                max([crsh['dim'] for crsh in corr_shells]),
                numpy.max(n_orbitals)
            ], numpy.complex_)

            # Read the projectors from the file:
            for ik in range(n_k):
                for icrsh in range(n_corr_shells):
                    for isp in range(n_spin_blocs):

                        # calculate the offset:
                        offset = 0
                        n_orb = 0
                        for ish in range(n_shells):
                            if (n_orb == 0):
                                if (shells[ish]['atom']
                                        == corr_shells[icrsh]['atom']) and (
                                            shells[ish]['sort']
                                            == corr_shells[icrsh]['sort']):
                                    n_orb = corr_shells[icrsh]['dim']
                                else:
                                    offset += shells[ish]['dim']

                        proj_mat[ik, isp, icrsh, 0:n_orb,
                                 offset:offset + n_orb] = numpy.identity(n_orb)

            # now define the arrays for weights and hopping ...
            # w(k_index),  default normalisation
            bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
            hopping = numpy.zeros([
                n_k, n_spin_blocs,
                numpy.max(n_orbitals),
                numpy.max(n_orbitals)
            ], numpy.complex_)

            if (weights_in_file):
                # weights in the file
                for ik in range(n_k):
                    bz_weights[ik] = R.next()

            # if the sum over spins is in the weights, take it out again!!
            sm = sum(bz_weights)
            bz_weights[:] /= sm

            # Grab the H
            for isp in range(n_spin_blocs):
                for ik in range(n_k):
                    n_orb = n_orbitals[ik, isp]

                    # first read all real components for given k, then read
                    # imaginary parts
                    if (first_real_part_matrix):

                        for i in range(n_orb):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in range(istart, n_orb):
                                hopping[ik, isp, i, j] = R.next()

                        for i in range(n_orb):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in range(istart, n_orb):
                                hopping[ik, isp, i, j] += R.next() * 1j
                                if ((only_upper_triangle) and (i != j)):
                                    hopping[ik, isp, j,
                                            i] = hopping[ik, isp, i,
                                                         j].conjugate()

                    else:  # read (real,im) tuple

                        for i in range(n_orb):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in range(istart, n_orb):
                                hopping[ik, isp, i, j] = R.next()
                                hopping[ik, isp, i, j] += R.next() * 1j

                                if ((only_upper_triangle) and (i != j)):
                                    hopping[ik, isp, j,
                                            i] = hopping[ik, isp, i,
                                                         j].conjugate()
            # keep some things that we need for reading parproj:
            things_to_set = [
                'n_shells', 'shells', 'n_corr_shells', 'corr_shells',
                'n_spin_blocs', 'n_orbitals', 'n_k', 'SO', 'SP', 'energy_unit'
            ]
            for it in things_to_set:
                setattr(self, it, locals()[it])
        except StopIteration:  # a more explicit error if the file is corrupted.
            raise "HK Converter : reading file dft_file failed!"

        R.close()

        # Save to the HDF5:
        with HDFArchive(self.hdf_file, 'a') as ar:
            if not (self.dft_subgrp in ar):
                ar.create_group(self.dft_subgrp)
            things_to_save = [
                'energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO',
                'charge_below', 'density_required', 'symm_op', 'n_shells',
                'shells', 'n_corr_shells', 'corr_shells', 'use_rotations',
                'rot_mat', 'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T',
                'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
                'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr'
            ]
            for it in things_to_save:
                ar[self.dft_subgrp][it] = locals()[it]
Ejemplo n.º 34
0
            print "="*80
            print

        if mpi.is_master_node() and vasp_running:
            open('./vasp.lock', 'a').close()
            
    if mpi.is_master_node():
        total_energy = dft_energy + corr_energy - dft_dc
        with open('TOTENERGY', 'w') as f:
            f.write("  Total energy: %s\n"%(total_energy))
            f.write("  DFT energy: %s\n"%(dft_energy))
            f.write("  Corr. energy: %s\n"%(corr_energy))
            f.write("  DFT DC: %s\n"%(dft_dc))
            f.write("  Energy correction: %s\n"%(corr_energy - dft_dc))

    mpi.report("***Done")


if __name__ == '__main__':
    try:
        vasp_pid = int(sys.argv[1])
    except (ValueError, KeyError):
        if mpi.is_master_node():
            print "VASP process pid must be provided as the first argument"
        raise
#    if len(sys.argv) > 1:
#        vasp_path = sys.argv[1]
#    else:
#        try:
#            vasp_path = os.environ['VASP_DIR']
#        except KeyError:
Ejemplo n.º 35
0
def get_chi0_wnk(g_wk, nw=1, nwf=None):

    fmesh = g_wk.mesh.components[0]
    kmesh = g_wk.mesh.components[1]

    if nwf is None:
        nwf = len(fmesh) / 2

    mpi.barrier()
    mpi.report('g_wk ' + str(g_wk[Idx(2), Idx(0, 1, 2)][0, 0]))
    n = np.sum(g_wk.data) / len(kmesh)
    mpi.report('n ' + str(n))
    mpi.barrier()

    mpi.report('--> g_wr from g_wk')
    g_wr = fourier_wk_to_wr(g_wk)

    mpi.barrier()
    mpi.report('g_wr ' + str(g_wr[Idx(2), Idx(0, 1, 2)][0, 0]))
    n_r = np.sum(g_wr.data, axis=0)[0]
    mpi.report('n_r=0 ' + str(n_r[0, 0]))
    mpi.barrier()

    mpi.report('--> chi0_wnr from g_wr')
    chi0_wnr = chi0r_from_gr_PH(nw=nw, nnu=nwf, gr=g_wr)

    #mpi.report('--> chi0_wnr from g_wr (nompi)')
    #chi0_wnr_nompi = chi0r_from_gr_PH_nompi(nw=nw, nnu=nwf, gr=g_wr)

    del g_wr

    #abs_diff = np.abs(chi0_wnr.data - chi0_wnr_nompi.data)
    #mpi.report('shape = ' + str(abs_diff.shape))
    #idx = np.argmax(abs_diff)
    #mpi.report('argmax = ' + str(idx))
    #diff = np.max(abs_diff)
    #mpi.report('diff = %6.6f' % diff)
    #del chi0_wnr
    #chi0_wnr = chi0_wnr_nompi

    #exit()

    mpi.barrier()
    mpi.report('chi0_wnr ' +
               str(chi0_wnr[Idx(0), Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    chi0_r0 = np.sum(chi0_wnr[:, :, Idx(0, 0, 0)].data)
    mpi.report('chi0_r0 ' + str(chi0_r0))
    mpi.barrier()

    mpi.report('--> chi0_wnk from chi0_wnr')
    chi0_wnk = chi0q_from_chi0r(chi0_wnr)

    del chi0_wnr

    mpi.barrier()
    mpi.report('chi0_wnk ' +
               str(chi0_wnk[Idx(0), Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    chi0 = np.sum(chi0_wnk.data) / len(kmesh)
    mpi.report('chi0 = ' + str(chi0))
    mpi.barrier()

    #if mpi.is_master_node():
    if False:
        from triqs_tprf.ParameterCollection import ParameterCollection
        p = ParameterCollection()
        p.g_wk = g_wk
        p.g_wr = g_wr
        p.chi0_wnr = chi0_wnr
        p.chi0_wnk = chi0_wnk

        print '--> Writing debug info for BSE'
        with HDFArchive('data_debug_bse.h5', 'w') as arch:
            arch['p'] = p

    mpi.barrier()

    return chi0_wnk
Ejemplo n.º 36
0
    def convert_dmft_input(self):
        """
        Reads the input files, and stores the data in the HDFfile
        """
        
                   
        if not (mpi.is_master_node()): return # do it only on master:
        mpi.report("Reading input from %s..."%self.lda_file)

        # Read and write only on Master!!!
        # R is a generator : each R.Next() will return the next number in the file
        R = read_fortran_file(self.lda_file)
        try:
            energy_unit = R.next()                         # read the energy convertion factor
            n_k = int(R.next())                            # read the number of k points
            k_dep_projection = 1                          
            SP = int(R.next())                            # flag for spin-polarised calculation
            SO = int(R.next())                            # flag for spin-orbit calculation
            charge_below = R.next()                       # total charge below energy window
            density_required = R.next()                   # total density required, for setting the chemical potential
            symm_op = 1                                   # Use symmetry groups for the k-sum

            # the information on the non-correlated shells is not important here, maybe skip:
            n_shells = int(R.next())                      # number of shells (e.g. Fe d, As p, O p) in the unit cell, 
                                                               # corresponds to index R in formulas
            shells = [ [ int(R.next()) for i in range(4) ] for icrsh in range(n_shells) ]    # reads iatom, sort, l, dim
            #shells = numpy.array(shells)
            
            n_corr_shells = int(R.next())                 # number of corr. shells (e.g. Fe d, Ce f) in the unit cell, 
                                                          # corresponds to index R in formulas
            # now read the information about the shells:
            corr_shells = [ [ int(R.next()) for i in range(6) ] for icrsh in range(n_corr_shells) ]    # reads iatom, sort, l, dim, SO flag, irep

            self.inequiv_shells(corr_shells)              # determine the number of inequivalent correlated shells, has to be known for further reading...
            #corr_shells = numpy.array(corr_shells)

            use_rotations = 1
            rot_mat = [numpy.identity(corr_shells[icrsh][3],numpy.complex_) for icrsh in xrange(n_corr_shells)]
           
            # read the matrices
            rot_mat_time_inv = [0 for i in range(n_corr_shells)]

            for icrsh in xrange(n_corr_shells):
                for i in xrange(corr_shells[icrsh][3]):    # read real part:
                    for j in xrange(corr_shells[icrsh][3]):
                        rot_mat[icrsh][i,j] = R.next()
                for i in xrange(corr_shells[icrsh][3]):    # read imaginary part:
                    for j in xrange(corr_shells[icrsh][3]):
                        rot_mat[icrsh][i,j] += 1j * R.next()

                if (SP==1):             # read time inversion flag:
                    rot_mat_time_inv[icrsh] = int(R.next())
                    
                  
            
            # Read here the infos for the transformation of the basis:
            n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
            dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
            T = []
            for icrsh in range(self.n_inequiv_corr_shells):
                n_reps[icrsh] = int(R.next())   # number of representatives ("subsets"), e.g. t2g and eg
                dim_reps[icrsh] = [int(R.next()) for i in range(n_reps[icrsh])]   # dimensions of the subsets
            
            # The transformation matrix:
            # it is of dimension 2l+1, if no SO, and 2*(2l+1) with SO!!
            #T = []
            #for ish in xrange(self.n_inequiv_corr_shells):
                ll = 2*corr_shells[self.invshellmap[icrsh]][2]+1
                lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
                T.append(numpy.zeros([lmax,lmax],numpy.complex_))
                
                # now read it from file:
                for i in xrange(lmax):
                    for j in xrange(lmax):
                        T[icrsh][i,j] = R.next()
                for i in xrange(lmax):
                    for j in xrange(lmax):
                        T[icrsh][i,j] += 1j * R.next()

    
            # Spin blocks to be read:
            n_spin_blocs = SP + 1 - SO   
                 
        
            # read the list of n_orbitals for all k points
            n_orbitals = numpy.zeros([n_k,n_spin_blocs],numpy.int)
            #n_orbitals = [ [0 for isp in range(n_spin_blocs)] for ik in xrange(n_k)]
            for isp in range(n_spin_blocs):
                for ik in xrange(n_k):
                    #n_orbitals[ik][isp] = int(R.next())
                    n_orbitals[ik,isp] = int(R.next())
            #print n_orbitals
            

            # Initialise the projectors:
            #proj_mat = [ [ [numpy.zeros([corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_) 
            #                for icrsh in range (n_corr_shells)] 
            #               for isp in range(n_spin_blocs)] 
            #             for ik in range(n_k) ]
            proj_mat = numpy.zeros([n_k,n_spin_blocs,n_corr_shells,max(numpy.array(corr_shells)[:,3]),max(n_orbitals)],numpy.complex_)
            

            # Read the projectors from the file:
            for ik in xrange(n_k):
                for icrsh in range(n_corr_shells):
                    no = corr_shells[icrsh][3]
                    # first Real part for BOTH spins, due to conventions in dmftproj:
                    for isp in range(n_spin_blocs):
                        for i in xrange(no):
                            for j in xrange(n_orbitals[ik][isp]):
                                #proj_mat[ik][isp][icrsh][i,j] = R.next()
                                proj_mat[ik,isp,icrsh,i,j] = R.next()
                    # now Imag part:
                    for isp in range(n_spin_blocs):
                        for i in xrange(no):
                            for j in xrange(n_orbitals[ik][isp]):
                                #proj_mat[ik][isp][icrsh][i,j] += 1j * R.next()
                                proj_mat[ik,isp,icrsh,i,j] += 1j * R.next()
            
          
            # now define the arrays for weights and hopping ...
            bz_weights = numpy.ones([n_k],numpy.float_)/ float(n_k)  # w(k_index),  default normalisation 
            #hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_) 
            #             for isp in range(n_spin_blocs)] for ik in xrange(n_k) ]
            hopping = numpy.zeros([n_k,n_spin_blocs,max(n_orbitals),max(n_orbitals)],numpy.complex_)
                            
            # weights in the file
            for ik in xrange(n_k) : bz_weights[ik] = R.next()         
                
            # if the sum over spins is in the weights, take it out again!!
            sm = sum(bz_weights)
            bz_weights[:] /= sm 
	    
            # Grab the H
            # we use now the convention of a DIAGONAL Hamiltonian!!!!
            for isp in range(n_spin_blocs):
                for ik in xrange(n_k) :
                    no = n_orbitals[ik][isp]
                    for i in xrange(no):
                        #hopping[ik][isp][i,i] = R.next() * energy_unit
                        hopping[ik,isp,i,i] = R.next() * energy_unit
            
            #keep some things that we need for reading parproj:
            self.n_shells = n_shells
            self.shells = shells
            self.n_corr_shells = n_corr_shells
            self.corr_shells = corr_shells
            self.n_spin_blocs = n_spin_blocs
            self.n_orbitals = n_orbitals
            self.n_k = n_k
            self.SO = SO
            self.SP = SP
            self.energy_unit = energy_unit
        except StopIteration : # a more explicit error if the file is corrupted.
            raise "SumkLDA : reading file HMLT_file failed!"

        R.close()
        
        #print proj_mat[0]

        #-----------------------------------------
        # Store the input into HDF5:
        ar = HDFArchive(self.hdf_file,'a')
        if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp) 
        # The subgroup containing the data. If it does not exist, it is created.
        # If it exists, the data is overwritten!!!
        
        ar[self.lda_subgrp]['energy_unit'] = energy_unit
        ar[self.lda_subgrp]['n_k'] = n_k
        ar[self.lda_subgrp]['k_dep_projection'] = k_dep_projection
        ar[self.lda_subgrp]['SP'] = SP
        ar[self.lda_subgrp]['SO'] = SO
        ar[self.lda_subgrp]['charge_below'] = charge_below
        ar[self.lda_subgrp]['density_required'] = density_required
        ar[self.lda_subgrp]['symm_op'] = symm_op
        ar[self.lda_subgrp]['n_shells'] = n_shells
        ar[self.lda_subgrp]['shells'] = shells
        ar[self.lda_subgrp]['n_corr_shells'] = n_corr_shells
        ar[self.lda_subgrp]['corr_shells'] = corr_shells
        ar[self.lda_subgrp]['use_rotations'] = use_rotations
        ar[self.lda_subgrp]['rot_mat'] = rot_mat
        ar[self.lda_subgrp]['rot_mat_time_inv'] = rot_mat_time_inv
        ar[self.lda_subgrp]['n_reps'] = n_reps
        ar[self.lda_subgrp]['dim_reps'] = dim_reps
        ar[self.lda_subgrp]['T'] = T
        ar[self.lda_subgrp]['n_orbitals'] = n_orbitals
        ar[self.lda_subgrp]['proj_mat'] = proj_mat
        ar[self.lda_subgrp]['bz_weights'] = bz_weights
        ar[self.lda_subgrp]['hopping'] = hopping
        
        del ar
              
        # Symmetries are used, 
        # Now do the symmetries for correlated orbitals:
        self.read_symmetry_input(orbits=corr_shells,symm_file=self.symm_file,symm_subgrp=self.symm_subgrp,SO=SO,SP=SP)
Ejemplo n.º 37
0
    def convert_parproj_input(self,
                              par_proj_subgrp='SumK_LDA_ParProj',
                              symm_par_subgrp='SymmPar'):
        """
        Reads the input for the partial charges projectors from case.parproj, and stores it in the symm_par_subgrp
        group in the HDF5.
        """

        if not (mpi.is_master_node()): return

        self.par_proj_subgrp = par_proj_subgrp
        self.symm_par_subgrp = symm_par_subgrp

        mpi.report("Reading parproj input from %s..." % self.parproj_file)

        dens_mat_below = [[
            numpy.zeros([self.shells[ish][3], self.shells[ish][3]],
                        numpy.complex_) for ish in range(self.n_shells)
        ] for isp in range(self.n_spin_blocs)]

        R = read_fortran_file(self.parproj_file)
        #try:

        n_parproj = [int(R.next()) for i in range(self.n_shells)]
        n_parproj = numpy.array(n_parproj)

        # Initialise P, here a double list of matrices:
        #proj_mat_pc = [ [ [ [numpy.zeros([self.shells[ish][3], self.n_orbitals[ik][isp]], numpy.complex_)
        #                     for ir in range(n_parproj[ish])]
        #                    for ish in range (self.n_shells) ]
        #                  for isp in range(self.n_spin_blocs) ]
        #                for ik in range(self.n_k) ]

        proj_mat_pc = numpy.zeros([
            self.n_k, self.n_spin_blocs, self.n_shells,
            max(n_parproj),
            max(numpy.array(self.shells)[:, 3]),
            max(self.n_orbitals)
        ], numpy.complex_)

        rot_mat_all = [
            numpy.identity(self.shells[ish][3], numpy.complex_)
            for ish in xrange(self.n_shells)
        ]
        rot_mat_all_time_inv = [0 for i in range(self.n_shells)]

        for ish in range(self.n_shells):
            #print ish
            # read first the projectors for this orbital:
            for ik in xrange(self.n_k):
                for ir in range(n_parproj[ish]):
                    for isp in range(self.n_spin_blocs):

                        for i in xrange(
                                self.shells[ish][3]):  # read real part:
                            for j in xrange(self.n_orbitals[ik][isp]):
                                proj_mat_pc[ik, isp, ish, ir, i, j] = R.next()

                    for isp in range(self.n_spin_blocs):
                        for i in xrange(
                                self.shells[ish][3]):  # read imaginary part:
                            for j in xrange(self.n_orbitals[ik][isp]):
                                proj_mat_pc[ik, isp, ish, ir, i,
                                            j] += 1j * R.next()

            # now read the Density Matrix for this orbital below the energy window:
            for isp in range(self.n_spin_blocs):
                for i in xrange(self.shells[ish][3]):  # read real part:
                    for j in xrange(self.shells[ish][3]):
                        dens_mat_below[isp][ish][i, j] = R.next()
            for isp in range(self.n_spin_blocs):
                for i in xrange(self.shells[ish][3]):  # read imaginary part:
                    for j in xrange(self.shells[ish][3]):
                        dens_mat_below[isp][ish][i, j] += 1j * R.next()
                if (self.SP == 0): dens_mat_below[isp][ish] /= 2.0

            # Global -> local rotation matrix for this shell:
            for i in xrange(self.shells[ish][3]):  # read real part:
                for j in xrange(self.shells[ish][3]):
                    rot_mat_all[ish][i, j] = R.next()
            for i in xrange(self.shells[ish][3]):  # read imaginary part:
                for j in xrange(self.shells[ish][3]):
                    rot_mat_all[ish][i, j] += 1j * R.next()

            #print Dens_Mat_below[0][ish],Dens_Mat_below[1][ish]

            if (self.SP):
                rot_mat_all_time_inv[ish] = int(R.next())

        #except StopIteration : # a more explicit error if the file is corrupted.
        #    raise "Wien2kConverter: reading file for Projectors failed!"
        R.close()

        #-----------------------------------------
        # Store the input into HDF5:
        ar = HDFArchive(self.hdf_file, 'a')
        if not (self.par_proj_subgrp in ar):
            ar.create_group(self.par_proj_subgrp)
        # The subgroup containing the data. If it does not exist, it is created.
        # If it exists, the data is overwritten!!!
        thingstowrite = [
            'dens_mat_below', 'n_parproj', 'proj_mat_pc', 'rot_mat_all',
            'rot_mat_all_time_inv'
        ]
        for it in thingstowrite:
            exec "ar['%s']['%s'] = %s" % (self.par_proj_subgrp, it, it)
        del ar

        # Symmetries are used,
        # Now do the symmetries for all orbitals:
        self.read_symmetry_input(orbits=self.shells,
                                 symm_file=self.symmpar_file,
                                 symm_subgrp=self.symm_par_subgrp,
                                 SO=self.SO,
                                 SP=self.SP)
Ejemplo n.º 38
0
L = TBLattice ( units = [(1, 0, 0) , (0, 1, 0) ], hopping = hop)
SL = TBSuperLattice(tb_lattice =L, super_lattice_units = [ (2, 0), (0, 2) ])

# SumK function that will perform the sum over the BZ
SK = SumkDiscreteFromLattice (lattice = SL, n_points = 8, method = "Riemann")

# Defines G and Sigma with a block structure compatible with the SumK function
G= BlockGf( name_block_generator = [ (s, GfImFreq(indices = SK.GFBlocIndices, mesh = S.G.mesh)) for s in ['up', 'down'] ], make_copies = False)
Sigma = G.copy()

# Init Sigma
for n, B in S.Sigma : B <<= 2.0

S.symm_to_real(gf_in = S.Sigma, gf_out = Sigma) # Embedding

# Computes sum over BZ and returns density
dens = (SK(mu = Chemical_potential, Sigma = Sigma, field = None , result = G).total_density()/4)
mpi.report("Total density  = %.3f"%dens)

S.real_to_symm(gf_in = G, gf_out = S.G)       # Extraction
S.G0 = inverse(S.Sigma + inverse(S.G))                           # Finally get S.G0

# Solve the impurity problem
S.solve(n_cycles = 3000, n_warmup_cycles = 0, length_cycle = 10, n_legendre = 30)

# Opens the results shelve
if mpi.is_master_node():
  Results = HDFArchive("cdmft_4_sites.output.h5", 'w')
  Results["G"] = S.G
  Results["Gl"] = S.G_legendre
Ejemplo n.º 39
0
    def read_symmetry_input(self, orbits, symm_file, symm_subgrp, SO, SP):
        """
        Reads input for the symmetrisations from symm_file, which is case.sympar or case.symqmc.
        """

        if not (mpi.is_master_node()): return

        mpi.report("Reading symmetry input from %s..." % symm_file)

        n_orbits = len(orbits)
        R = read_fortran_file(symm_file)

        try:
            n_s = int(R.next())  # Number of symmetry operations
            n_atoms = int(R.next())  # number of atoms involved
            perm = [[int(R.next()) for i in xrange(n_atoms)]
                    for j in xrange(n_s)]  # list of permutations of the atoms
            if SP:
                time_inv = [int(R.next()) for j in xrange(n_s)
                            ]  # timeinversion for SO xoupling
            else:
                time_inv = [0 for j in xrange(n_s)]

            # Now read matrices:
            mat = []
            for in_s in xrange(n_s):

                mat.append([
                    numpy.zeros([orbits[orb][3], orbits[orb][3]],
                                numpy.complex_) for orb in xrange(n_orbits)
                ])
                for orb in range(n_orbits):
                    for i in xrange(orbits[orb][3]):
                        for j in xrange(orbits[orb][3]):
                            mat[in_s][orb][i, j] = R.next()  # real part
                    for i in xrange(orbits[orb][3]):
                        for j in xrange(orbits[orb][3]):
                            mat[in_s][orb][
                                i, j] += 1j * R.next()  # imaginary part

            # determine the inequivalent shells:
            #SHOULD BE FINALLY REMOVED, PUT IT FOR ALL ORBITALS!!!!!
            #self.inequiv_shells(orbits)
            mat_tinv = [
                numpy.identity(orbits[orb][3], numpy.complex_)
                for orb in range(n_orbits)
            ]

            if ((SO == 0) and (SP == 0)):
                # here we need an additional time inversion operation, so read it:
                for orb in range(n_orbits):
                    for i in xrange(orbits[orb][3]):
                        for j in xrange(orbits[orb][3]):
                            mat_tinv[orb][i, j] = R.next()  # real part
                    for i in xrange(orbits[orb][3]):
                        for j in xrange(orbits[orb][3]):
                            mat_tinv[orb][i,
                                          j] += 1j * R.next()  # imaginary part

        except StopIteration:  # a more explicit error if the file is corrupted.
            raise "Symmetry : reading file failed!"

        R.close()

        # Save it to the HDF:
        ar = HDFArchive(self.hdf_file, 'a')
        if not (symm_subgrp in ar): ar.create_group(symm_subgrp)
        thingstowrite = [
            'n_s', 'n_atoms', 'perm', 'orbits', 'SO', 'SP', 'time_inv', 'mat',
            'mat_tinv'
        ]
        for it in thingstowrite:
            exec "ar['%s']['%s'] = %s" % (symm_subgrp, it, it)
        del ar
Ejemplo n.º 40
0
      chemical_potential,dc_imp,dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
  S.Sigma_iw << mpi.bcast(S.Sigma_iw)
  chemical_potential = mpi.bcast(chemical_potential)
  dc_imp = mpi.bcast(dc_imp)
  dc_energ = mpi.bcast(dc_energ)
  SK.set_mu(chemical_potential)
  SK.set_dc(dc_imp,dc_energ)

for iteration_number in range(1,loops+1):
    if mpi.is_master_node(): print "Iteration = ", iteration_number

    SK.symm_deg_gf(S.Sigma_iw,orb=0)                        # symmetrise Sigma
    SK.set_Sigma([ S.Sigma_iw ])                            # set Sigma into the SumK class
    chemical_potential = SK.calc_mu( precision = prec_mu )  # find the chemical potential for given density
    S.G_iw << SK.extract_G_loc()[0]                         # calc the local Green function
    mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())

    # Init the DC term and the real part of Sigma, if no previous runs found:
    if (iteration_number==1 and previous_present==False):
        dm = S.G_iw.density()
        SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
        S.Sigma_iw << SK.dc_imp[0]['up'][0,0]

    # Calculate new G0_iw to input into the solver:
    if mpi.is_master_node():
        # We can do a mixing of Delta in order to stabilize the DMFT iterations:
        S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
        ar = HDFArchive(dft_filename+'.h5','a')
        if (iteration_number>1 or previous_present):
            mpi.report("Mixing input Delta with factor %s"%delta_mix)
            Delta = (delta_mix * delta(S.G0_iw)) + (1.0-delta_mix) * ar['dmft_output']['Delta_iw']
Ejemplo n.º 41
0
    def convert_dmft_input(self):
        """
        Reads the input files, and stores the data in the HDFfile
        """

        if not (mpi.is_master_node()): return  # do it only on master:
        mpi.report("Reading input from %s..." % self.lda_file)

        # Read and write only on Master!!!
        # R is a generator : each R.Next() will return the next number in the file
        R = read_fortran_file(self.lda_file)
        try:
            energy_unit = R.next()  # read the energy convertion factor
            n_k = int(R.next())  # read the number of k points
            k_dep_projection = 1
            SP = int(R.next())  # flag for spin-polarised calculation
            SO = int(R.next())  # flag for spin-orbit calculation
            charge_below = R.next()  # total charge below energy window
            density_required = R.next(
            )  # total density required, for setting the chemical potential
            symm_op = 1  # Use symmetry groups for the k-sum

            # the information on the non-correlated shells is not important here, maybe skip:
            n_shells = int(R.next(
            ))  # number of shells (e.g. Fe d, As p, O p) in the unit cell,
            # corresponds to index R in formulas
            shells = [[int(R.next()) for i in range(4)]
                      for icrsh in range(n_shells)
                      ]  # reads iatom, sort, l, dim
            #shells = numpy.array(shells)

            n_corr_shells = int(R.next(
            ))  # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
            # corresponds to index R in formulas
            # now read the information about the shells:
            corr_shells = [[int(R.next()) for i in range(6)]
                           for icrsh in range(n_corr_shells)
                           ]  # reads iatom, sort, l, dim, SO flag, irep

            self.inequiv_shells(
                corr_shells
            )  # determine the number of inequivalent correlated shells, has to be known for further reading...
            #corr_shells = numpy.array(corr_shells)

            use_rotations = 1
            rot_mat = [
                numpy.identity(corr_shells[icrsh][3], numpy.complex_)
                for icrsh in xrange(n_corr_shells)
            ]

            # read the matrices
            rot_mat_time_inv = [0 for i in range(n_corr_shells)]

            for icrsh in xrange(n_corr_shells):
                for i in xrange(corr_shells[icrsh][3]):  # read real part:
                    for j in xrange(corr_shells[icrsh][3]):
                        rot_mat[icrsh][i, j] = R.next()
                for i in xrange(corr_shells[icrsh][3]):  # read imaginary part:
                    for j in xrange(corr_shells[icrsh][3]):
                        rot_mat[icrsh][i, j] += 1j * R.next()

                if (SP == 1):  # read time inversion flag:
                    rot_mat_time_inv[icrsh] = int(R.next())

            # Read here the infos for the transformation of the basis:
            n_reps = [1 for i in range(self.n_inequiv_corr_shells)]
            dim_reps = [0 for i in range(self.n_inequiv_corr_shells)]
            T = []
            for icrsh in range(self.n_inequiv_corr_shells):
                n_reps[icrsh] = int(R.next(
                ))  # number of representatives ("subsets"), e.g. t2g and eg
                dim_reps[icrsh] = [
                    int(R.next()) for i in range(n_reps[icrsh])
                ]  # dimensions of the subsets

                # The transformation matrix:
                # it is of dimension 2l+1, if no SO, and 2*(2l+1) with SO!!
                #T = []
                #for ish in xrange(self.n_inequiv_corr_shells):
                ll = 2 * corr_shells[self.invshellmap[icrsh]][2] + 1
                lmax = ll * (corr_shells[self.invshellmap[icrsh]][4] + 1)
                T.append(numpy.zeros([lmax, lmax], numpy.complex_))

                # now read it from file:
                for i in xrange(lmax):
                    for j in xrange(lmax):
                        T[icrsh][i, j] = R.next()
                for i in xrange(lmax):
                    for j in xrange(lmax):
                        T[icrsh][i, j] += 1j * R.next()

            # Spin blocks to be read:
            n_spin_blocs = SP + 1 - SO

            # read the list of n_orbitals for all k points
            n_orbitals = numpy.zeros([n_k, n_spin_blocs], numpy.int)
            #n_orbitals = [ [0 for isp in range(n_spin_blocs)] for ik in xrange(n_k)]
            for isp in range(n_spin_blocs):
                for ik in xrange(n_k):
                    #n_orbitals[ik][isp] = int(R.next())
                    n_orbitals[ik, isp] = int(R.next())
            #print n_orbitals

            # Initialise the projectors:
            #proj_mat = [ [ [numpy.zeros([corr_shells[icrsh][3], n_orbitals[ik][isp]], numpy.complex_)
            #                for icrsh in range (n_corr_shells)]
            #               for isp in range(n_spin_blocs)]
            #             for ik in range(n_k) ]
            proj_mat = numpy.zeros([
                n_k, n_spin_blocs, n_corr_shells,
                max(numpy.array(corr_shells)[:, 3]),
                max(n_orbitals)
            ], numpy.complex_)

            # Read the projectors from the file:
            for ik in xrange(n_k):
                for icrsh in range(n_corr_shells):
                    no = corr_shells[icrsh][3]
                    # first Real part for BOTH spins, due to conventions in dmftproj:
                    for isp in range(n_spin_blocs):
                        for i in xrange(no):
                            for j in xrange(n_orbitals[ik][isp]):
                                #proj_mat[ik][isp][icrsh][i,j] = R.next()
                                proj_mat[ik, isp, icrsh, i, j] = R.next()
                    # now Imag part:
                    for isp in range(n_spin_blocs):
                        for i in xrange(no):
                            for j in xrange(n_orbitals[ik][isp]):
                                #proj_mat[ik][isp][icrsh][i,j] += 1j * R.next()
                                proj_mat[ik, isp, icrsh, i, j] += 1j * R.next()

            # now define the arrays for weights and hopping ...
            bz_weights = numpy.ones([n_k], numpy.float_) / float(
                n_k)  # w(k_index),  default normalisation
            #hopping = [ [numpy.zeros([n_orbitals[ik][isp],n_orbitals[ik][isp]],numpy.complex_)
            #             for isp in range(n_spin_blocs)] for ik in xrange(n_k) ]
            hopping = numpy.zeros(
                [n_k, n_spin_blocs,
                 max(n_orbitals),
                 max(n_orbitals)], numpy.complex_)

            # weights in the file
            for ik in xrange(n_k):
                bz_weights[ik] = R.next()

            # if the sum over spins is in the weights, take it out again!!
            sm = sum(bz_weights)
            bz_weights[:] /= sm

            # Grab the H
            # we use now the convention of a DIAGONAL Hamiltonian!!!!
            for isp in range(n_spin_blocs):
                for ik in xrange(n_k):
                    no = n_orbitals[ik][isp]
                    for i in xrange(no):
                        #hopping[ik][isp][i,i] = R.next() * energy_unit
                        hopping[ik, isp, i, i] = R.next() * energy_unit

            #keep some things that we need for reading parproj:
            self.n_shells = n_shells
            self.shells = shells
            self.n_corr_shells = n_corr_shells
            self.corr_shells = corr_shells
            self.n_spin_blocs = n_spin_blocs
            self.n_orbitals = n_orbitals
            self.n_k = n_k
            self.SO = SO
            self.SP = SP
            self.energy_unit = energy_unit
        except StopIteration:  # a more explicit error if the file is corrupted.
            raise "SumkLDA : reading file HMLT_file failed!"

        R.close()

        #print proj_mat[0]

        #-----------------------------------------
        # Store the input into HDF5:
        ar = HDFArchive(self.hdf_file, 'a')
        if not (self.lda_subgrp in ar): ar.create_group(self.lda_subgrp)
        # The subgroup containing the data. If it does not exist, it is created.
        # If it exists, the data is overwritten!!!

        ar[self.lda_subgrp]['energy_unit'] = energy_unit
        ar[self.lda_subgrp]['n_k'] = n_k
        ar[self.lda_subgrp]['k_dep_projection'] = k_dep_projection
        ar[self.lda_subgrp]['SP'] = SP
        ar[self.lda_subgrp]['SO'] = SO
        ar[self.lda_subgrp]['charge_below'] = charge_below
        ar[self.lda_subgrp]['density_required'] = density_required
        ar[self.lda_subgrp]['symm_op'] = symm_op
        ar[self.lda_subgrp]['n_shells'] = n_shells
        ar[self.lda_subgrp]['shells'] = shells
        ar[self.lda_subgrp]['n_corr_shells'] = n_corr_shells
        ar[self.lda_subgrp]['corr_shells'] = corr_shells
        ar[self.lda_subgrp]['use_rotations'] = use_rotations
        ar[self.lda_subgrp]['rot_mat'] = rot_mat
        ar[self.lda_subgrp]['rot_mat_time_inv'] = rot_mat_time_inv
        ar[self.lda_subgrp]['n_reps'] = n_reps
        ar[self.lda_subgrp]['dim_reps'] = dim_reps
        ar[self.lda_subgrp]['T'] = T
        ar[self.lda_subgrp]['n_orbitals'] = n_orbitals
        ar[self.lda_subgrp]['proj_mat'] = proj_mat
        ar[self.lda_subgrp]['bz_weights'] = bz_weights
        ar[self.lda_subgrp]['hopping'] = hopping

        del ar

        # Symmetries are used,
        # Now do the symmetries for correlated orbitals:
        self.read_symmetry_input(orbits=corr_shells,
                                 symm_file=self.symm_file,
                                 symm_subgrp=self.symm_subgrp,
                                 SO=SO,
                                 SP=SP)
Ejemplo n.º 42
0
    def solve(self, U_int, J_hund, T=None, verbosity=0, Iteration_Number=1, Test_Convergence=0.0001):
        """Calculation of the impurity Greens function using Hubbard-I"""

        if self.Converged :
            mpi.report("Solver %(name)s has already converged: SKIPPING"%self.__dict__)
            return

        if mpi.is_master_node():
            self.verbosity = verbosity
        else:
            self.verbosity = 0

        #self.Nmoments = 5

        ur,ujmn,umn=self.__set_umatrix(U=U_int,J=J_hund,T=T)


        M = [x for x in self.G.mesh]
        self.zmsb = numpy.array([x for x in M],numpy.complex_)

#        # for the tails:
#        tailtempl={}
#        for sig,g in self.G:
#            tailtempl[sig] = copy.deepcopy(g.tail)
#            for i in range(9): tailtempl[sig][i] *= 0.0

#        self.__save_eal('eal.dat',Iteration_Number)

#        mpi.report( "Starting Fortran solver %(name)s"%self.__dict__)

        self.Sigma_Old <<= self.Sigma
        self.G_Old <<= self.G

#        # call the fortran solver:
#        temp = 1.0/self.beta
#        gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
#                                                    zmsb=self.zmsb, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = self.verbosity)

        #self.sig = sigma_atomic_fullu(gf=self.gf,e0f=self.eal,zmsb=self.zmsb,ns=self.Nspin,nlm=self.Nlm)
        def print_matrix(m):
            for row in m:
                print ''.join(map("{0:12.7f}".format, row))


# Hartree-Fock solver
        self.Sigma.zero()
        dm = self.G.density()
        if mpi.is_master_node():
#            print
#            print "  Reduced U-matrix:"
#            print "  U:"
#            print_matrix(ujmn)
#            print "  Up:"
#            print_matrix(umn)
#
##            sig_test = {bl: numpy.zeros((self.Nlm, self.Nlm)) for bl in dm}
#            sig_test = {}
#            sig_test['up'] = numpy.dot(umn, dm['up'].real) + numpy.dot(ujmn, dm['down'].real)
#            sig_test['down'] = numpy.dot(umn, dm['down'].real) + numpy.dot(ujmn, dm['up'].real)
#            print "  Sigma test:"
#            print_matrix(sig_test['up'])
            print
            print "  Density matrix (up):"
            print_matrix(dm['up'])
            print
            print "  Density matrix (down):"
            print_matrix(dm['down'])

        if self.dudarev:
            Ueff = U_int - J_hund
            corr_energy = 0.0
            dft_dc = 0.0
            for bl1 in dm:
# (U - J) * (1/2 - n)
                self.Sigma[bl1] << Ueff * (0.5 * numpy.identity(self.Nlm) - dm[bl1])
# 1/2 (U - J) * \sum_{\sig} [\sum_{m} n_{m,m \sig} - \sum_{m1,m2} n_{m1,m2 \sig} n_{m2,m1 \sig}]
                corr_energy += 0.5 * Ueff * (dm[bl1].trace() - (dm[bl1]*dm[bl1].conj()).sum()).real
# V[n] * n^{\dagger}
                dft_dc += (self.Sigma[bl1](0) * dm[bl1].conj()).sum().real

        else:
# !!!!!
# !!!!! Mind the order of indices in the 4-index matrix!
# !!!!!
            for il1 in xrange(self.Nlm):
                for il2 in xrange(self.Nlm):
                    for il3 in xrange(self.Nlm):
                        for il4 in xrange(self.Nlm):
                            for bl1 in dm:
                                for bl2 in dm:
                                    self.Sigma[bl1][il1, il2] += ur[il1, il3, il2, il4] * dm[bl2][il3, il4]
                                    if bl1 == bl2:
                                        self.Sigma[bl1][il1, il2] -= ur[il1, il3, il4, il2] * dm[bl1][il3, il4]

        if mpi.is_master_node() and self.verbosity > 0:
            print
            print "  Sigma (up):"
            print_matrix(self.Sigma['up'](0).real)
            print
            print "  Sigma (down):"
            print_matrix(self.Sigma['down'](0).real)
#        if (self.verbosity==0):
#            # No fortran output, so give basic results here
#            mpi.report("Atomic occupancy in Hubbard I Solver  : %s"%self.atocc)
#            mpi.report("Atomic magn. mom. in Hubbard I Solver : %s"%self.atmag)

        # transfer the data to the GF class:
        if (self.UseSpinOrbit):
            nlmtot = self.Nlm*2         # only one block in this case!
        else:
            nlmtot = self.Nlm

#        M={}
#        isp=-1
#        for a,al in self.gf_struct:
#            isp+=1
#            M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
#            for i in range(min(self.Nmoments,8)):
#                tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]
#
#        #glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb, data =M[a], tail =self.tailtempl[a])
#        #                   for a,al in self.gf_struct]
#        glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
#        self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
#        
#        self.__copy_Gf(self.G,M,tailtempl)
#
#        # Self energy:
#        self.G0 <<= iOmega_n
#
#        M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
#        self.G0 -= M
#        self.Sigma <<= self.G0 - inverse(self.G)
#
#        # invert G0
#        self.G0.invert()

        def test_distance(G1,G2, dist) :
            def f(G1,G2) :
                #print abs(G1.data - G2.data)
                dS = max(abs(G1.data - G2.data).flatten())
                aS = max(abs(G1.data).flatten())
                if mpi.is_master_node():
                    print "  Distances:", dS, " vs ", aS * dist
                return dS <= aS*dist
            return reduce(lambda x,y : x and y, [f(g1,g2) for (i1,g1),(i2,g2) in izip(G1,G2)])

        mpi.report("\nChecking Sigma for convergence...\nUsing tolerance %s"%Test_Convergence)
        self.Converged = test_distance(self.Sigma,self.Sigma_Old,Test_Convergence)

        if self.Converged :
            mpi.report("Solver HAS CONVERGED")
        else :
            mpi.report("Solver has not yet converged")

        return corr_energy, dft_dc
Ejemplo n.º 43
0
def five_plus_five(use_interaction=True):

    results_file_name = "5_plus_5." + ("int."
                                       if use_interaction else "") + "h5"

    # Block structure of GF
    L = 2  # d-orbital
    spin_names = ("up", "dn")
    orb_names = cubic_names(L)

    # Input parameters
    beta = 40.
    mu = 26

    U = 4.0
    J = 0.7
    F0 = U
    F2 = J * (14.0 / (1.0 + 0.63))
    F4 = F2 * 0.63

    # Dump the local Hamiltonian to a text file (set to None to disable dumping)
    H_dump = "H.txt"
    # Dump Delta parameters to a text file (set to None to disable dumping)
    Delta_dump = "Delta_params.txt"

    # Hybridization function parameters
    # Delta(\tau) is diagonal in the basis of cubic harmonics
    # Each component of Delta(\tau) is represented as a list of single-particle
    # terms parametrized by pairs (V_k,\epsilon_k).
    delta_params = {
        "xy": {
            'V': 0.2,
            'e': -0.2
        },
        "yz": {
            'V': 0.2,
            'e': -0.15
        },
        "z^2": {
            'V': 0.2,
            'e': -0.1
        },
        "xz": {
            'V': 0.2,
            'e': 0.05
        },
        "x^2-y^2": {
            'V': 0.2,
            'e': 0.4
        }
    }

    atomic_levels = {
        ('up_xy', 0): -0.2,
        ('dn_xy', 0): -0.2,
        ('up_yz', 0): -0.15,
        ('dn_yz', 0): -0.15,
        ('up_z^2', 0): -0.1,
        ('dn_z^2', 0): -0.1,
        ('up_xz', 0): 0.05,
        ('dn_xz', 0): 0.05,
        ('up_x^2-y^2', 0): 0.4,
        ('dn_x^2-y^2', 0): 0.4
    }

    n_iw = 1025
    n_tau = 10001

    p = {}
    p["max_time"] = -1
    p["random_name"] = ""
    p["random_seed"] = 123 * mpi.rank + 567
    p["length_cycle"] = 50
    #p["n_warmup_cycles"] = 5000
    p["n_warmup_cycles"] = 500
    p["n_cycles"] = int(1.e1 / mpi.size)
    #p["n_cycles"] = int(5.e5 / mpi.size)
    #p["n_cycles"] = int(5.e6 / mpi.size)
    p["partition_method"] = "autopartition"
    p["measure_G_tau"] = True
    p["move_shift"] = True
    p["move_double"] = True
    p["measure_pert_order"] = False
    p["performance_analysis"] = False
    p["use_trace_estimator"] = False

    mpi.report("Welcome to 5+5 (5 orbitals + 5 bath sites) test.")

    gf_struct = set_operator_structure(spin_names, orb_names, False)
    mkind = get_mkind(False, None)

    H = Operator()

    if use_interaction:
        # Local Hamiltonian
        U_mat = U_matrix(L, [F0, F2, F4], basis='cubic')
        H += h_int_slater(spin_names, orb_names, U_mat, False, H_dump=H_dump)
    else:
        mu = 0.

    p["h_int"] = H

    # Quantum numbers (N_up and N_down)
    QN = [Operator(), Operator()]
    for cn in orb_names:
        for i, sn in enumerate(spin_names):
            QN[i] += n(*mkind(sn, cn))
    if p["partition_method"] == "quantum_numbers": p["quantum_numbers"] = QN

    mpi.report("Constructing the solver...")

    # Construct the solver
    S = SolverCore(beta=beta, gf_struct=gf_struct, n_tau=n_tau, n_iw=n_iw)

    mpi.report("Preparing the hybridization function...")

    H_hyb = Operator()

    # Set hybridization function
    if Delta_dump: Delta_dump_file = open(Delta_dump, 'w')
    for sn, cn in product(spin_names, orb_names):
        bn, i = mkind(sn, cn)
        V = delta_params[cn]['V']
        e = delta_params[cn]['e']

        delta_w = Gf(mesh=MeshImFreq(beta, 'Fermion', n_iw), target_shape=[])
        delta_w << (V**2) * inverse(iOmega_n - e)

        S.G0_iw[bn][i, i] << inverse(iOmega_n + mu - atomic_levels[(bn, i)] -
                                     delta_w)

        cnb = cn + '_b'  # bath level
        a = sn + '_' + cn
        b = sn + '_' + cn + '_b'

        H_hyb += ( atomic_levels[(bn,i)] - mu ) * n(a, 0) + \
            n(b,0) * e + V * ( c(a,0) * c_dag(b,0) + c(b,0) * c_dag(a,0) )

        # Dump Delta parameters
        if Delta_dump:
            Delta_dump_file.write(bn + '\t')
            Delta_dump_file.write(str(V) + '\t')
            Delta_dump_file.write(str(e) + '\n')

    if mpi.is_master_node():
        filename_ham = 'data_Ham%s.h5' % ('_int' if use_interaction else '')
        with HDFArchive(filename_ham, 'w') as arch:
            arch['H'] = H_hyb + H
            arch['gf_struct'] = gf_struct
            arch['beta'] = beta

    mpi.report("Running the simulation...")

    # Solve the problem
    S.solve(**p)

    # Save the results
    if mpi.is_master_node():
        Results = HDFArchive(results_file_name, 'w')
        Results['G_tau'] = S.G_tau
        Results['G0_iw'] = S.G0_iw
        Results['use_interaction'] = use_interaction
        Results['delta_params'] = delta_params
        Results['spin_names'] = spin_names
        Results['orb_names'] = orb_names

        import __main__
        Results.create_group("log")
        log = Results["log"]
        log["version"] = version.version
        log["triqs_hash"] = version.triqs_hash
        log["cthyb_hash"] = version.cthyb_hash
        log["script"] = inspect.getsource(__main__)
Ejemplo n.º 44
0
n_iw = 1025
n_tau = 10001

p = {}
p["max_time"] = -1
p["random_name"] = ""
p["random_seed"] = 123 * mpi.rank + 567
p["length_cycle"] = 50
p["n_warmup_cycles"] = 20000
p["n_cycles"] = 1000000

results_file_name = "spinless"
if use_qn: results_file_name += ".qn"
results_file_name += ".h5"

mpi.report(
    "Welcome to spinless (spinless electrons on a correlated dimer) test.")

H = U * n("tot", "A") * n("tot", "B")

QN = []
if use_qn:
    QN.append(n("tot", "A") + n("tot", "B"))
    p["partition_method"] = "quantum_numbers"
    p["quantum_numbers"] = QN

gf_struct = {"tot": ["A", "B"]}

mpi.report("Constructing the solver...")

## Construct the solver
S = SolverCore(beta=beta, gf_struct=gf_struct, n_iw=n_iw, n_tau=n_tau)
Ejemplo n.º 45
0
Archivo: bse.py Proyecto: mzingl/tprf
def get_chi0_wnk(g_wk, nw=1, nwf=None):
    r""" Compute the generalized lattice bubble susceptibility 
    :math:`\chi^{(0)}_{abcd}(\omega, \nu, \mathbf{k})` from the single-particle
    Green's function :math:`G_{ab}(\omega, \mathbf{k})`.

    Parameters
    ----------

    g_wk : Single-particle Green's function :math:`G_{ab}(\omega, \mathbf{k})`.
    nw : Number of bosonic freqiencies in :math:`\chi`.
    nwf : Number of fermionic freqiencies in :math:`\chi`.    

    Returns
    -------

    chi0_wnk : Generalized lattice bubble susceptibility
               :math:`\chi^{(0)}_{abcd}(\omega, \nu, \mathbf{k})`
    """

    fmesh = g_wk.mesh.components[0]
    kmesh = g_wk.mesh.components[1]

    if nwf is None:
        nwf = len(fmesh) / 2

    mpi.barrier()
    mpi.report('g_wk ' + str(g_wk[Idx(2), Idx(0, 0, 0)][0, 0]))
    n = np.sum(g_wk.data) / len(kmesh)
    mpi.report('n ' + str(n))
    mpi.barrier()

    mpi.report('--> g_wr from g_wk')
    g_wr = fourier_wk_to_wr(g_wk)

    mpi.barrier()
    mpi.report('g_wr ' + str(g_wr[Idx(2), Idx(0, 0, 0)][0, 0]))
    n_r = np.sum(g_wr.data, axis=0)[0]
    mpi.report('n_r=0 ' + str(n_r[0, 0]))
    mpi.barrier()

    mpi.report('--> chi0_wnr from g_wr')
    chi0_wnr = chi0r_from_gr_PH(nw=nw, nn=nwf, g_nr=g_wr)

    #mpi.report('--> chi0_wnr from g_wr (nompi)')
    #chi0_wnr_nompi = chi0r_from_gr_PH_nompi(nw=nw, nn=nwf, g_wr=g_wr)

    del g_wr

    #abs_diff = np.abs(chi0_wnr.data - chi0_wnr_nompi.data)
    #mpi.report('shape = ' + str(abs_diff.shape))
    #idx = np.argmax(abs_diff)
    #mpi.report('argmax = ' + str(idx))
    #diff = np.max(abs_diff)
    #mpi.report('diff = %6.6f' % diff)
    #del chi0_wnr
    #chi0_wnr = chi0_wnr_nompi

    #exit()

    mpi.barrier()
    mpi.report('chi0_wnr ' +
               str(chi0_wnr[Idx(0), Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    chi0_r0 = np.sum(chi0_wnr[:, :, Idx(0, 0, 0)].data)
    mpi.report('chi0_r0 ' + str(chi0_r0))
    mpi.barrier()

    mpi.report('--> chi0_wnk from chi0_wnr')
    chi0_wnk = chi0q_from_chi0r(chi0_wnr)

    del chi0_wnr

    mpi.barrier()
    mpi.report('chi0_wnk ' +
               str(chi0_wnk[Idx(0), Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    chi0 = np.sum(chi0_wnk.data) / len(kmesh)
    mpi.report('chi0 = ' + str(chi0))
    mpi.barrier()

    #if mpi.is_master_node():
    if False:
        from triqs_tprf.ParameterCollection import ParameterCollection
        p = ParameterCollection()
        p.g_wk = g_wk
        p.g_wr = g_wr
        p.chi0_wnr = chi0_wnr
        p.chi0_wnk = chi0_wnk

        print '--> Writing debug info for BSE'
        with HDFArchive('data_debug_bse.h5', 'w') as arch:
            arch['p'] = p

    mpi.barrier()

    return chi0_wnk
Ejemplo n.º 46
0
#!/bin/env pytriqs

import pytriqs.utility.mpi as mpi
from pytriqs.gf import GfImFreq, iOmega_n, inverse
from pytriqs.operators import n
from pytriqs.archive import HDFArchive
from triqs_cthyb import SolverCore

mpi.report(
    "Welcome to asymm_bath test (1 band with a small asymmetric hybridization function)."
)
mpi.report("This test helps to detect sampling problems.")

# H_loc parameters
beta = 40.0
ed = -1.0
U = 2.0

epsilon = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]
V = 0.2

# Parameters
n_iw = 1025
n_tau = 10001

p = {}
p["max_time"] = -1
p["random_name"] = ""
p["random_seed"] = 123 * mpi.rank + 567
p["length_cycle"] = 50
p["n_warmup_cycles"] = 20000
Ejemplo n.º 47
0
def anderson(use_qn=True, use_blocks=True):

    spin_names = ("up","dn")
    mkind = lambda spin: (spin,0) if use_blocks else ("tot",spin)

    # Input parameters
    beta = 10.0
    U = 2.0
    mu = 1.0
    h = 0.1
    V = 0.5
    epsilon = 2.3

    n_iw = 1025
    n_tau = 10001

    p = {}
    p["max_time"] = -1
    p["random_name"] = ""
    p["random_seed"] = 123 * mpi.rank + 567
    p["length_cycle"] = 50
    p["n_warmup_cycles"] = 50000
    p["n_cycles"] = 5000000
    p["measure_density_matrix"] = True
    p["use_norm_as_weight"] = True

    results_file_name = "anderson"
    if use_blocks: results_file_name += ".block"
    if use_qn: results_file_name += ".qn"
    results_file_name += ".h5"

    mpi.report("Welcome to Anderson (1 correlated site + symmetric bath) test.")

    H = U*n(*mkind("up"))*n(*mkind("dn"))

    QN = []
    if use_qn:
        for spin in spin_names: QN.append(n(*mkind(spin)))
        p["quantum_numbers"] = QN
        p["partition_method"] = "quantum_numbers"

    gf_struct = {}
    for spin in spin_names:
        bn, i = mkind(spin)
        gf_struct.setdefault(bn,[]).append(i)

    gf_struct = [ [key, value] for key, value in gf_struct.items() ] # convert from dict to list of lists
            
    mpi.report("Constructing the solver...")

    # Construct the solver
    S = SolverCore(beta=beta, gf_struct=gf_struct, n_tau=n_tau, n_iw=n_iw)

    mpi.report("Preparing the hybridization function...")

    # Set hybridization function
    delta_w = GfImFreq(indices = [0], beta=beta)
    delta_w << (V**2) * inverse(iOmega_n - epsilon) + (V**2) * inverse(iOmega_n + epsilon)
    for spin in spin_names:
        bn, i = mkind(spin)
        S.G0_iw[bn][i,i] << inverse(iOmega_n + mu - {'up':h,'dn':-h}[spin] - delta_w)

    mpi.report("Running the simulation...")

    # Solve the problem
    S.solve(h_int=H, **p)

    # Save the results
    if mpi.is_master_node():
        static_observables = {'Nup' : n(*mkind("up")), 'Ndn' : n(*mkind("dn")), 'unity' : Operator(1.0)}
        dm = S.density_matrix
        for oname in static_observables.keys():
            print oname, trace_rho_op(dm,static_observables[oname],S.h_loc_diagonalization)

        with HDFArchive(results_file_name,'w') as Results:
            Results['G_tau'] = S.G_tau
Ejemplo n.º 48
0
#!/bin/env pytriqs

import pytriqs.utility.mpi as mpi
from pytriqs.gf.local import *
from pytriqs.operators import *
from pytriqs.archive import HDFArchive
from pytriqs.applications.impurity_solvers.cthyb import *

mpi.report("Welcome to asymm_bath test (1 band with a small asymmetric hybridization function).")
mpi.report("This test helps to detect sampling problems.")

# H_loc parameters
beta = 40.0
ed = -1.0
U = 2.0

epsilon = [0.0,0.1,0.2,0.3,0.4,0.5]
V = 0.2

# Parameters
n_iw = 1025
n_tau = 10001

p = {}
p["max_time"] = -1
p["random_name"] = ""
p["random_seed"] = 123 * mpi.rank + 567
p["length_cycle"] = 50
p["n_warmup_cycles"] = 20000
p["n_cycles"] = 1000000
p["performance_analysis"] = True
Ejemplo n.º 49
0
for use_qn in (True, False):

    n_iw = 1025
    n_tau = 10001

    p = {}
    p["max_time"] = -1
    p["random_name"] = ""
    p["random_seed"] = 123 * mpi.rank + 567
    p["length_cycle"] = 50
    p["n_warmup_cycles"] = 50000
    p["n_cycles"] = 3000000

    results_file_name = "kanamori" + (".qn" if use_qn else "") + ".h5"

    mpi.report("Welcome to Kanamori benchmark.")

    gf_struct = set_operator_structure(spin_names,orb_names,False)
    mkind = get_mkind(False,None)

    ## Hamiltonian
    H = h_int_kanamori(spin_names,orb_names,
                       np.array([[0,U-3*J],[U-3*J,0]]),
                       np.array([[U,U-2*J],[U-2*J,U]]),
                       J,False)

    if use_qn:
        QN = [sum([n(*mkind("up",o)) for o in orb_names],Operator()),
              sum([n(*mkind("dn",o)) for o in orb_names],Operator())]
        for o in orb_names:
            dn = n(*mkind("up",o)) - n(*mkind("dn",o))
Ejemplo n.º 50
0
def set_U_matrix(U_interact,J_hund,n_orb,l,use_matrix=True,T=None,sl_int=None,use_spinflip=False,dim_reps=None,irep=None):
    """ Set up the interaction vertex""" 

    offset = 0
    U4ind = None
    U = None
    Up = None
    if (use_matrix):
        if not (sl_int is None):
            Umat = Umatrix(l=l)
            assert len(sl_int)==(l+1),"sl_int has the wrong length"
            if (type(sl_int)==ListType):
                Rcl = numpy.array(sl_int)
            else:
                Rcl = sl_int
            Umat(T=T,Rcl=Rcl)
        else:
            if ((U_interact==None)and(J_hund==None)):
                mpi.report("Give U,J or Slater integrals!!!")
                assert 0
            Umat = Umatrix(U_interact=U_interact, J_hund=J_hund, l=l)
            Umat(T=T)
            
        Umat.reduce_matrix()
        if (Umat.N==Umat.Nmat):
            # Transformation T is of size 2l+1
            U = Umat.U
            Up = Umat.Up
        else:
            # Transformation is of size 2(2l+1)
            U = Umat.U
         # now we have the reduced matrices U and Up, we need it for tail fitting anyways

        if (use_spinflip):
            #Take the 4index Umatrix
            # check for imaginary matrix elements:
            if (abs(Umat.Ufull.imag)>0.0001).any():
                mpi.report("WARNING: complex interaction matrix!! Ignoring imaginary part for the moment!")
                mpi.report("If you want to change this, look into Wien2k/solver_multiband.py")
            U4ind = Umat.Ufull.real
    
        # this will be changed for arbitrary irep:
        # use only one subgroup of orbitals?
        if not (irep is None):
            #print irep, dim_reps
            assert not (dim_reps is None), "Dimensions of the representatives are missing!"
            assert n_orb==dim_reps[irep-1],"Dimensions of dimrep and n_orb do not fit!"
            for ii in range(irep-1):
                offset += dim_reps[ii]
    else:
        if ((U_interact==None)and(J_hund==None)):
            mpi.report("For Kanamori representation, give U and J!!")
            assert 0
        U  = numpy.zeros([n_orb,n_orb],numpy.float_)
        Up = numpy.zeros([n_orb,n_orb],numpy.float_)
        for i in range(n_orb):
            for j in range(n_orb):
	        if (i==j):
	            Up[i,i] = U_interact 
	        else:
	       	    Up[i,j] = U_interact - 2.0*J_hund
		    U[i,j]  = U_interact - 3.0*J_hund

    return U, Up, U4ind, offset
Ejemplo n.º 51
0
    def __init__(self, hdf_file, mu = 0.0, h_field = 0.0, use_lda_blocks = False, lda_data = 'SumK_LDA', symm_corr_data = 'SymmCorr',
                 par_proj_data = 'SumK_LDA_ParProj', symm_par_data = 'SymmPar', bands_data = 'SumK_LDA_Bands'):
        """
        Initialises the class from data previously stored into an HDF5
        """

        if  not (type(hdf_file)==StringType):
            mpi.report("Give a string for the HDF5 filename to read the input!")
        else:
            self.hdf_file = hdf_file
            self.lda_data = lda_data
            self.par_proj_data = par_proj_data
            self.bands_data = bands_data
            self.symm_par_data = symm_par_data
            self.symm_corr_data = symm_corr_data
            self.block_names = [ ['up','down'], ['ud'] ]
            self.n_spin_blocks_gf = [2,1]
            self.Gupf = None
            self.h_field = h_field
            
            # read input from HDF:
            things_to_read = ['energy_unit','n_k','k_dep_projection','SP','SO','charge_below','density_required',
                              'symm_op','n_shells','shells','n_corr_shells','corr_shells','use_rotations','rot_mat',
                              'rot_mat_time_inv','n_reps','dim_reps','T','n_orbitals','proj_mat','bz_weights','hopping']
            optional_things = ['gf_struct_solver','map_inv','map','chemical_potential','dc_imp','dc_energ','deg_shells']

            #ar=HDFArchive(self.hdf_file,'a')
            #del ar

            self.retval = self.read_input_from_hdf(subgrp=self.lda_data,things_to_read=things_to_read,optional_things=optional_things)

            #ar=HDFArchive(self.hdf_file,'a')
            #del ar

            if (self.SO) and (abs(self.h_field)>0.000001):
                self.h_field=0.0
                mpi.report("For SO, the external magnetic field is not implemented, setting it to 0!!")

           
            self.inequiv_shells(self.corr_shells)     # determine the number of inequivalent correlated shells

            # field to convert block_names to indices
            self.names_to_ind = [{}, {}]
            for ibl in range(2):
                for inm in range(self.n_spin_blocks_gf[ibl]): 
                    self.names_to_ind[ibl][self.block_names[ibl][inm]] = inm * self.SP #(self.Nspinblocs-1)

            # GF structure used for the local things in the k sums
            self.gf_struct_corr = [ [ (al, range( self.corr_shells[i][3])) for al in self.block_names[self.corr_shells[i][4]] ]  
                                   for i in xrange(self.n_corr_shells) ]

            if not (self.retval['gf_struct_solver']):
                # No gf_struct was stored in HDF, so first set a standard one:
                self.gf_struct_solver = [ [ (al, range( self.corr_shells[self.invshellmap[i]][3]) )
                                           for al in self.block_names[self.corr_shells[self.invshellmap[i]][4]] ]
                                         for i in xrange(self.n_inequiv_corr_shells) ]
                self.map = [ {} for i in xrange(self.n_inequiv_corr_shells) ]
                self.map_inv = [ {} for i in xrange(self.n_inequiv_corr_shells) ]
                for i in xrange(self.n_inequiv_corr_shells):
                    for al in self.block_names[self.corr_shells[self.invshellmap[i]][4]]:
                        self.map[i][al] = [al for j in range( self.corr_shells[self.invshellmap[i]][3] ) ]
                        self.map_inv[i][al] = al

            if not (self.retval['dc_imp']):
                # init the double counting:
                self.__init_dc()

            if not (self.retval['chemical_potential']):
                self.chemical_potential = mu

            if not (self.retval['deg_shells']):
                self.deg_shells = [ [] for i in range(self.n_inequiv_corr_shells)]

            if self.symm_op:
                #mpi.report("Do the init for symm:")
                self.Symm_corr = Symmetry(hdf_file,subgroup=self.symm_corr_data)

            # determine the smallest blocs, if wanted:
            if (use_lda_blocks): dm=self.analyse_BS()

          
            # now save things again to HDF5:
            if (mpi.is_master_node()):
                ar=HDFArchive(self.hdf_file,'a')
                ar[self.lda_data]['h_field'] = self.h_field
                del ar
            self.save()
Ejemplo n.º 52
0
    def analyse_BS(self, threshold = 0.00001, include_shells = None, dm = None):
        """ Determines the Greens function block structure from the simple point integration"""

        if (dm==None): dm = self.simple_point_dens_mat()
        
        dens_mat = [dm[self.invshellmap[ish]] for ish in xrange(self.n_inequiv_corr_shells) ]
               
        if include_shells is None: include_shells=range(self.n_inequiv_corr_shells)
        for ish in include_shells:

            #self.gf_struct_solver.append([])
            self.gf_struct_solver[ish] = []
            gf_struct_temp = []
            
            a_list = [a for a,al in self.gf_struct_corr[self.invshellmap[ish]] ]
            for a in a_list:
                
                dm = dens_mat[ish][a]            
                dmbool = (abs(dm) > threshold)          # gives an index list of entries larger that threshold

                offdiag = []
                for i in xrange(len(dmbool)):
                    for j in xrange(i,len(dmbool)):
                        if ((dmbool[i,j])&(i!=j)): offdiag.append([i,j])

                NBlocs = len(dmbool)
                blocs = [ [i] for i in range(NBlocs) ]

                for i in range(len(offdiag)):
                    if (offdiag[i][0]!=offdiag[i][1]):
                        for j in range(len(blocs[offdiag[i][1]])): blocs[offdiag[i][0]].append(blocs[offdiag[i][1]][j])
                        del blocs[offdiag[i][1]]
                        for j in range(i+1,len(offdiag)):
                            if (offdiag[j][0]==offdiag[i][1]): offdiag[j][0]=offdiag[i][0]
                            if (offdiag[j][1]==offdiag[i][1]): offdiag[j][1]=offdiag[i][0]
                            if (offdiag[j][0]>offdiag[i][1]): offdiag[j][0] -= 1
                            if (offdiag[j][1]>offdiag[i][1]): offdiag[j][1] -= 1
                            offdiag[j].sort()
                        NBlocs-=1

                for i in range(NBlocs):
                    blocs[i].sort()
                    self.gf_struct_solver[ish].append( ('%s%s'%(a,i),range(len(blocs[i]))) )
                    gf_struct_temp.append( ('%s%s'%(a,i),blocs[i]) )
                   
                               
                # map is the mapping of the blocs from the SK blocs to the CTQMC blocs:
                self.map[ish][a] = range(len(dmbool))
                for ibl in range(NBlocs):
                    for j in range(len(blocs[ibl])):
                        self.map[ish][a][blocs[ibl][j]] = '%s%s'%(a,ibl)
                        self.map_inv[ish]['%s%s'%(a,ibl)] = a


            # now calculate degeneracies of orbitals:
            dm = {}
            for bl in gf_struct_temp:
                bln = bl[0]
                ind = bl[1]
                # get dm for the blocks:
                dm[bln] = numpy.zeros([len(ind),len(ind)],numpy.complex_)
                for i in range(len(ind)):
                    for j in range(len(ind)):
                        dm[bln][i,j] = dens_mat[ish][self.map_inv[ish][bln]][ind[i],ind[j]]

            for bl in gf_struct_temp:
                for bl2 in gf_struct_temp:
                    if (dm[bl[0]].shape==dm[bl2[0]].shape) :
                        if ( ( (abs(dm[bl[0]]-dm[bl2[0]])<threshold).all() ) and (bl[0]!=bl2[0]) ):
                            # check if it was already there:
                            ind1=-1
                            ind2=-2
                            for n,ind in enumerate(self.deg_shells[ish]):
                                if (bl[0] in ind): ind1=n
                                if (bl2[0] in ind): ind2=n
                            if ((ind1<0)and(ind2>=0)):
                                self.deg_shells[ish][ind2].append(bl[0])
                            elif ((ind1>=0)and(ind2<0)):
                                self.deg_shells[ish][ind1].append(bl2[0])
                            elif ((ind1<0)and(ind2<0)):
                                self.deg_shells[ish].append([bl[0],bl2[0]])

        if (mpi.is_master_node()):
            ar=HDFArchive(self.hdf_file,'a')
            ar[self.lda_data]['gf_struct_solver'] = self.gf_struct_solver
            ar[self.lda_data]['map'] = self.map
            ar[self.lda_data]['map_inv'] = self.map_inv
            try:
                ar[self.lda_data]['deg_shells'] = self.deg_shells
            except:
                mpi.report("deg_shells not stored, degeneracies not found")
            del ar
            
        return dens_mat
Ejemplo n.º 53
0
def solve_lattice_bse(g_wk, gamma_wnn, tail_corr_nwf=None):

    fmesh_g = g_wk.mesh.components[0]
    kmesh = g_wk.mesh.components[1]

    bmesh = gamma_wnn.mesh.components[0]
    fmesh = gamma_wnn.mesh.components[1]

    nk = len(kmesh)
    nw = (len(bmesh) + 1) / 2
    nwf = len(fmesh) / 2
    nwf_g = len(fmesh_g) / 2

    if mpi.is_master_node():
        print tprf_banner(), "\n"
        print 'Lattcie BSE with local vertex approximation.\n'
        print 'nk    =', nk
        print 'nw    =', nw
        print 'nwf   =', nwf
        print 'nwf_g =', nwf_g
        print 'tail_corr_nwf =', tail_corr_nwf
        print

    if tail_corr_nwf is None:
        tail_corr_nwf = nwf

    mpi.report('--> chi0_wnk_tail_corr')
    chi0_wnk_tail_corr = get_chi0_wnk(g_wk, nw=nw, nwf=tail_corr_nwf)

    mpi.report('--> trace chi0_wnk_tail_corr (WARNING! NO TAIL FIT. FIXME!)')
    chi0_wk_tail_corr = chi0q_sum_nu_tail_corr_PH(chi0_wnk_tail_corr)
    #chi0_wk_tail_corr = chi0q_sum_nu(chi0_wnk_tail_corr)

    mpi.barrier()
    mpi.report('B1 ' +
               str(chi0_wk_tail_corr[Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    mpi.report('--> chi0_wnk_tail_corr to chi0_wnk')
    if tail_corr_nwf != nwf:
        mpi.report('--> fixed_fermionic_window_python_wnk')
        chi0_wnk = fixed_fermionic_window_python_wnk(chi0_wnk_tail_corr,
                                                     nwf=nwf)
    else:
        chi0_wnk = chi0_wnk_tail_corr.copy()

    del chi0_wnk_tail_corr

    mpi.barrier()
    mpi.report('C ' + str(chi0_wnk[Idx(0), Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    mpi.report('--> trace chi0_wnk')
    chi0_wk = chi0q_sum_nu(chi0_wnk)

    mpi.barrier()
    mpi.report('D ' + str(chi0_wk[Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    dchi_wk = chi0_wk_tail_corr - chi0_wk

    chi0_kw = Gf(mesh=MeshProduct(kmesh, bmesh),
                 target_shape=chi0_wk_tail_corr.target_shape)
    chi0_kw.data[:] = chi0_wk_tail_corr.data.swapaxes(0, 1)

    del chi0_wk
    del chi0_wk_tail_corr

    assert (chi0_wnk.mesh.components[0] == bmesh)
    assert (chi0_wnk.mesh.components[1] == fmesh)
    assert (chi0_wnk.mesh.components[2] == kmesh)

    # -- Lattice BSE calc with built in trace
    mpi.report('--> chi_kw from BSE')
    #mpi.report('DEBUG BSE INACTIVE'*72)
    chi_kw = chiq_sum_nu_from_chi0q_and_gamma_PH(chi0_wnk, gamma_wnn)
    #chi_kw = chi0_kw.copy()

    mpi.barrier()
    mpi.report('--> chi_kw from BSE (done)')

    del chi0_wnk

    mpi.report('--> chi_kw tail corrected (using chi0_wnk)')
    for k in kmesh:
        chi_kw[
            k, :] += dchi_wk[:,
                             k]  # -- account for high freq of chi_0 (better than nothing)

    del dchi_wk

    mpi.report('--> solve_lattice_bse, done.')

    return chi_kw, chi0_kw
Ejemplo n.º 54
0
    def set_dc(self,dens_mat,U_interact,J_hund,orb=0,use_dc_formula=0,use_val=None):
        """Sets the double counting term for inequiv orbital orb
           use_dc_formula=0: LDA+U FLL double counting, use_dc_formula=1: Held's formula. 
           use_dc_formula=2: AMF
           Be sure that you use the correct interaction Hamiltonian!"""
        

        #if (not hasattr(self,"dc_imp")): self.__init_dc()
        

        #dm = [ {} for i in xrange(self.n_corr_shells)]
        #for i in xrange(self.n_corr_shells):
        #    l = self.corr_shells[i][3] #*(1+self.corr_shells[i][4])
        #    for j in xrange(len(self.gf_struct_corr[i])):
        #        dm[i]['%s'%self.gf_struct_corr[i][j][0]] = numpy.zeros([l,l],numpy.float_)
        

        for icrsh in xrange(self.n_corr_shells):

            iorb = self.shellmap[icrsh]    # iorb is the index of the inequivalent shell corresponding to icrsh

            if (iorb==orb):
                # do this orbital
                Ncr = {}
                l = self.corr_shells[icrsh][3] #*(1+self.corr_shells[icrsh][4])
                
                for j in xrange(len(self.gf_struct_corr[icrsh])):
                    self.dc_imp[icrsh]['%s'%self.gf_struct_corr[icrsh][j][0]] = numpy.identity(l,numpy.float_)
                    blname = self.gf_struct_corr[icrsh][j][0]
                    Ncr[blname] = 0.0
                    
                for a,al in self.gf_struct_solver[iorb]:
                #for bl in self.map[iorb][blname]:
                    bl = self.map_inv[iorb][a]
                    #print 'bl, valiue = ',bl,dens_mat[a].real.trace()
                    Ncr[bl] += dens_mat[a].real.trace()
                    
                    #print 'Ncr=',Ncr
                M = self.corr_shells[icrsh][3]
               
                Ncrtot = 0.0
                a_list = [a for a,al in self.gf_struct_corr[icrsh]]
                for bl in a_list:
                    Ncrtot += Ncr[bl]

                # average the densities if there is no SP:
                if (self.SP==0):
                    for bl in a_list:
                        Ncr[bl] = Ncrtot / len(a_list)
                # correction for SO: we have only one block in this case, but in DC we need N/2
                elif (self.SP==1 and self.SO==1):
                    for bl in a_list:
                        Ncr[bl] = Ncrtot / 2.0

                if (use_val is None):
                              
                    if (use_dc_formula==0):
                        self.dc_energ[icrsh] = U_interact / 2.0 * Ncrtot * (Ncrtot-1.0)
                        for bl in a_list:
                            Uav = U_interact*(Ncrtot-0.5) - J_hund*(Ncr[bl] - 0.5)
                            self.dc_imp[icrsh][bl] *= Uav                              
                            self.dc_energ[icrsh]  -= J_hund / 2.0 * (Ncr[bl]) * (Ncr[bl]-1.0)
                            mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals())
                    elif (use_dc_formula==1):
                        self.dc_energ[icrsh] = (U_interact + J_hund * (2.0-(M-1)) / (2*M-1)  ) / 2.0 * Ncrtot * (Ncrtot-1.0)
                        for bl in a_list:
                            # Held's formula, with U_interact the interorbital onsite interaction
                            Uav = (U_interact + J_hund * (2.0-(M-1)) / (2*M-1)  ) * (Ncrtot-0.5)
                            self.dc_imp[icrsh][bl] *= Uav 
                            mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals())
                    elif (use_dc_formula==2):
                        self.dc_energ[icrsh] = 0.5 * U_interact * Ncrtot * Ncrtot
                        for bl in a_list:
                            # AMF
                            Uav = U_interact*(Ncrtot - Ncr[bl]/M) - J_hund * (Ncr[bl] - Ncr[bl]/M)
                            self.dc_imp[icrsh][bl] *= Uav
                            self.dc_energ[icrsh] -= (U_interact + (M-1)*J_hund)/M * 0.5 * Ncr[bl] * Ncr[bl]
                            mpi.report("DC for shell %(icrsh)i and block %(bl)s = %(Uav)f"%locals())
                    
                    # output:
                    mpi.report("DC energy for shell %s = %s"%(icrsh,self.dc_energ[icrsh]))

                else:    
            
                    a_list = [a for a,al in self.gf_struct_corr[icrsh]]
                    for bl in a_list:
                        self.dc_imp[icrsh][bl] *= use_val
                    
                    self.dc_energ[icrsh] = use_val * Ncrtot

                    # output:
                    mpi.report("DC for shell %(icrsh)i = %(use_val)f"%locals())
                    mpi.report("DC energy = %s"%self.dc_energ[icrsh])
Ejemplo n.º 55
0
    def solve(self, U_int, J_hund, T=None, verbosity=0, Iteration_Number=1, Test_Convergence=0.0001):
        """Calculation of the impurity Greens function using Hubbard-I"""

        if self.Converged :
            mpi.report("Solver %(name)s has already converged: SKIPPING"%self.__dict__)
            return

        if mpi.is_master_node():
            self.verbosity = verbosity
        else:
            self.verbosity = 0

        #self.Nmoments = 5

        ur,umn,ujmn=self.__set_umatrix(U=U_int,J=J_hund,T=T)


        M = [x for x in self.G.mesh]
        self.zmsb = numpy.array([x for x in M],numpy.complex_)

        # for the tails:
        tailtempl={}
        for sig,g in self.G:
            tailtempl[sig] = copy.deepcopy(g.tail)
            for i in range(9): tailtempl[sig][i] *= 0.0

        self.__save_eal('eal.dat',Iteration_Number)

        mpi.report( "Starting Fortran solver %(name)s"%self.__dict__)

        self.Sigma_Old <<= self.Sigma
        self.G_Old <<= self.G

        # call the fortran solver:
        temp = 1.0/self.beta
        gf,tail,self.atocc,self.atmag = gf_hi_fullu(e0f=self.ealmat, ur=ur, umn=umn, ujmn=ujmn,
                                                    zmsb=self.zmsb, nmom=self.Nmoments, ns=self.Nspin, temp=temp, verbosity = self.verbosity)

        #self.sig = sigma_atomic_fullu(gf=self.gf,e0f=self.eal,zmsb=self.zmsb,ns=self.Nspin,nlm=self.Nlm)

        if (self.verbosity==0):
            # No fortran output, so give basic results here
            mpi.report("Atomic occupancy in Hubbard I Solver  : %s"%self.atocc)
            mpi.report("Atomic magn. mom. in Hubbard I Solver : %s"%self.atmag)

        # transfer the data to the GF class:
        if (self.UseSpinOrbit):
            nlmtot = self.Nlm*2         # only one block in this case!
        else:
            nlmtot = self.Nlm

        M={}
        isp=-1
        for a,al in self.gf_struct:
            isp+=1
            M[a] = numpy.array(gf[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot,:]).transpose(2,0,1).copy()
            for i in range(min(self.Nmoments,8)):
                tailtempl[a][i+1] = tail[i][isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot]

        #glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb, data =M[a], tail =self.tailtempl[a])
        #                   for a,al in self.gf_struct]
        glist = lambda : [ GfImFreq(indices = al, beta = self.beta, n_points = self.Nmsb) for a,al in self.gf_struct]
        self.G = BlockGf(name_list = self.a_list, block_list = glist(),make_copies=False)
        
        self.__copy_Gf(self.G,M,tailtempl)

        # Self energy:
        self.G0 <<= iOmega_n

        M = [ self.ealmat[isp*nlmtot:(isp+1)*nlmtot,isp*nlmtot:(isp+1)*nlmtot] for isp in range((2*self.Nlm)/nlmtot) ]
        self.G0 -= M
        self.Sigma <<= self.G0 - inverse(self.G)

        # invert G0
        self.G0.invert()

        def test_distance(G1,G2, dist) :
            def f(G1,G2) :
                #print abs(G1.data - G2.data)
                dS = max(abs(G1.data - G2.data).flatten())
                aS = max(abs(G1.data).flatten())
                return dS <= aS*dist
            return reduce(lambda x,y : x and y, [f(g1,g2) for (i1,g1),(i2,g2) in izip(G1,G2)])

        mpi.report("\nChecking Sigma for convergence...\nUsing tolerance %s"%Test_Convergence)
        self.Converged = test_distance(self.Sigma,self.Sigma_Old,Test_Convergence)

        if self.Converged :
            mpi.report("Solver HAS CONVERGED")
        else :
            mpi.report("Solver has not yet converged")
Ejemplo n.º 56
0
def run_all(vasp_pid):
    """
    """
    mpi.report("  Waiting for VASP lock to appear...")
    while not is_vasp_lock_present():
        time.sleep(1)

    vasp_running = True

    while vasp_running:
        if debug: print bcolors.RED + "rank %s"%(mpi.rank) + bcolors.ENDC
        mpi.report("  Waiting for VASP lock to disappear...")
        mpi.barrier()
        while is_vasp_lock_present():
            time.sleep(1)
#            if debug: print bcolors.YELLOW + " waiting: rank %s"%(mpi.rank) + bcolors.ENDC
            if not is_vasp_running(vasp_pid):
                mpi.report("  VASP stopped")
                vasp_running = False
                break

        if debug: print bcolors.MAGENTA + "rank %s"%(mpi.rank) + bcolors.ENDC
        err = 0
        exc = None
        try:
            if debug: print bcolors.BLUE + "plovasp: rank %s"%(mpi.rank) + bcolors.ENDC
            if mpi.is_master_node():
                plovasp.generate_and_output_as_text('plo.cfg', vasp_dir='./')
# Read energy from OSZICAR
                dft_energy = get_dft_energy()
        except Exception, exc:
            err = 1

        err = mpi.bcast(err)
        if err:
            if mpi.is_master_node():
                raise exc
            else:
                raise SystemExit(1)

        mpi.barrier()

        try:
            if debug: print bcolors.GREEN + "rank %s"%(mpi.rank) + bcolors.ENDC
            corr_energy, dft_dc = dmft_cycle()
        except:
            if mpi.is_master_node():
                print "  master forwarding the exception..."
                raise
            else:
                print "  rank %i exiting..."%(mpi.rank)
                raise SystemExit(1)
        mpi.barrier()

        if mpi.is_master_node():
            total_energy = dft_energy + corr_energy - dft_dc
            print
            print "="*80
            print "  Total energy: ", total_energy
            print "  DFT energy: ", dft_energy
            print "  Corr. energy: ", corr_energy
            print "  DFT DC: ", dft_dc
            print "="*80
            print

        if mpi.is_master_node() and vasp_running:
            open('./vasp.lock', 'a').close()
Ejemplo n.º 57
0
      chemical_potential,dc_imp,dc_energ = SK.load(['chemical_potential','dc_imp','dc_energ'])
  S.Sigma_iw << mpi.bcast(S.Sigma_iw)
  chemical_potential = mpi.bcast(chemical_potential)
  dc_imp = mpi.bcast(dc_imp)
  dc_energ = mpi.bcast(dc_energ)
  SK.set_mu(chemical_potential)
  SK.set_dc(dc_imp,dc_energ)

for iteration_number in range(1,loops+1):
    if mpi.is_master_node(): print "Iteration = ", iteration_number

    SK.symm_deg_gf(S.Sigma_iw,orb=0)                        # symmetrise Sigma
    SK.set_Sigma([ S.Sigma_iw ])                            # set Sigma into the SumK class
    chemical_potential = SK.calc_mu( precision = prec_mu )  # find the chemical potential for given density
    S.G_iw << SK.extract_G_loc()[0]                         # calc the local Green function
    mpi.report("Total charge of Gloc : %.6f"%S.G_iw.total_density())

    # Init the DC term and the real part of Sigma, if no previous runs found:
    if (iteration_number==1 and previous_present==False):
        dm = S.G_iw.density()
        SK.calc_dc(dm, U_interact = U, J_hund = J, orb = 0, use_dc_formula = dc_type)
        S.Sigma_iw << SK.dc_imp[0]['up'][0,0]

    # Calculate new G0_iw to input into the solver:
    if mpi.is_master_node():
        # We can do a mixing of Delta in order to stabilize the DMFT iterations:
        S.G0_iw << S.Sigma_iw + inverse(S.G_iw)
        ar = HDFArchive(dft_filename+'.h5','a')['dmft_output']
        if (iteration_number>1 or previous_present):
            mpi.report("Mixing input Delta with factor %s"%delta_mix)
            Delta = (delta_mix * delta(S.G0_iw)) + (1.0-delta_mix) * ar['Delta_iw']
Ejemplo n.º 58
0
    def convert_dft_input(self, first_real_part_matrix=True, only_upper_triangle=False, weights_in_file=False):
        """
        Reads the appropriate files and stores the data for the dft_subgrp in the hdf5 archive. 

        Parameters
        ----------
        first_real_part_matrix : boolean, optional
                                 Should all the real components for given k be read in first, followed by the imaginary parts?
        only_upper_triangle : boolean, optional
                              Should only the upper triangular part of H(k) be read in? 
        weights_in_file : boolean, optional
                          Are the k-point weights to be read in?

        """

        # Read and write only on the master node
        if not (mpi.is_master_node()):
            return
        mpi.report("Reading input from %s..." % self.dft_file)

        # R is a generator : each R.Next() will return the next number in the
        # file
        R = ConverterTools.read_fortran_file(
            self, self.dft_file, self.fortran_to_replace)
        try:
            # the energy conversion factor is 1.0, we assume eV in files
            energy_unit = 1.0
            # read the number of k points
            n_k = int(R.next())
            k_dep_projection = 0
            SP = 0                                        # no spin-polarision
            SO = 0                                        # no spin-orbit
            # total charge below energy window is set to 0
            charge_below = 0.0
            # density required, for setting the chemical potential
            density_required = R.next()
            symm_op = 0                                   # No symmetry groups for the k-sum

            # the information on the non-correlated shells is needed for
            # defining dimension of matrices:
            # number of shells considered in the Wanniers
            n_shells = int(R.next())
            # corresponds to index R in formulas
            # now read the information about the shells (atom, sort, l, dim):
            shell_entries = ['atom', 'sort', 'l', 'dim']
            shells = [{name: int(val) for name, val in zip(
                shell_entries, R)} for ish in range(n_shells)]

            # number of corr. shells (e.g. Fe d, Ce f) in the unit cell,
            n_corr_shells = int(R.next())
            # corresponds to index R in formulas
            # now read the information about the shells (atom, sort, l, dim, SO
            # flag, irep):
            corr_shell_entries = ['atom', 'sort', 'l', 'dim','SO','irep']
            corr_shells = [{name: int(val) for name, val in zip(
                corr_shell_entries, R)} for icrsh in range(n_corr_shells)]

            # determine the number of inequivalent correlated shells and maps,
            # needed for further reading
            [n_inequiv_shells, corr_to_inequiv,
                inequiv_to_corr] = ConverterTools.det_shell_equivalence(self, corr_shells)

            use_rotations = 0
            rot_mat = [numpy.identity(
                corr_shells[icrsh]['dim'], numpy.complex_) for icrsh in range(n_corr_shells)]
            rot_mat_time_inv = [0 for i in range(n_corr_shells)]

            # Representative representations are read from file
            n_reps = [1 for i in range(n_inequiv_shells)]
            dim_reps = [0 for i in range(n_inequiv_shells)]
            T = []
            for ish in range(n_inequiv_shells):
                # number of representatives ("subsets"), e.g. t2g and eg
                n_reps[ish] = int(R.next())
                dim_reps[ish] = [int(R.next()) for i in range(
                    n_reps[ish])]   # dimensions of the subsets

                # The transformation matrix:
                # is of dimension 2l+1, it is taken to be standard d (as in
                # Wien2k)
                ll = 2 * corr_shells[inequiv_to_corr[ish]]['l'] + 1
                lmax = ll * (corr_shells[inequiv_to_corr[ish]]['SO'] + 1)
                T.append(numpy.zeros([lmax, lmax], numpy.complex_))

                T[ish] = numpy.array([[0.0, 0.0, 1.0, 0.0, 0.0],
                                      [1.0 / sqrt(2.0), 0.0, 0.0,
                                       0.0, 1.0 / sqrt(2.0)],
                                      [-1.0 / sqrt(2.0), 0.0, 0.0,
                                       0.0, 1.0 / sqrt(2.0)],
                                      [0.0, 1.0 /
                                          sqrt(2.0), 0.0, -1.0 / sqrt(2.0), 0.0],
                                      [0.0, 1.0 / sqrt(2.0), 0.0, 1.0 / sqrt(2.0), 0.0]])

            # Spin blocks to be read:
            # number of spins to read for Norbs and Ham, NOT Projectors
            n_spin_blocs = SP + 1 - SO

            # define the number of n_orbitals for all k points: it is the
            # number of total bands and independent of k!
            n_orbitals = numpy.ones(
                [n_k, n_spin_blocs], numpy.int) * sum([sh['dim'] for sh in shells])

            # Initialise the projectors:
            proj_mat = numpy.zeros([n_k, n_spin_blocs, n_corr_shells, max(
                [crsh['dim'] for crsh in corr_shells]), numpy.max(n_orbitals)], numpy.complex_)

            # Read the projectors from the file:
            for ik in range(n_k):
                for icrsh in range(n_corr_shells):
                    for isp in range(n_spin_blocs):

                        # calculate the offset:
                        offset = 0
                        n_orb = 0
                        for ish in range(n_shells):
                            if (n_orb == 0):
                                if (shells[ish]['atom'] == corr_shells[icrsh]['atom']) and (shells[ish]['sort'] == corr_shells[icrsh]['sort']):
                                    n_orb = corr_shells[icrsh]['dim']
                                else:
                                    offset += shells[ish]['dim']

                        proj_mat[ik, isp, icrsh, 0:n_orb,
                                 offset:offset + n_orb] = numpy.identity(n_orb)

            # now define the arrays for weights and hopping ...
            # w(k_index),  default normalisation
            bz_weights = numpy.ones([n_k], numpy.float_) / float(n_k)
            hopping = numpy.zeros([n_k, n_spin_blocs, numpy.max(
                n_orbitals), numpy.max(n_orbitals)], numpy.complex_)

            if (weights_in_file):
                # weights in the file
                for ik in range(n_k):
                    bz_weights[ik] = R.next()

            # if the sum over spins is in the weights, take it out again!!
            sm = sum(bz_weights)
            bz_weights[:] /= sm

            # Grab the H
            for isp in range(n_spin_blocs):
                for ik in range(n_k):
                    n_orb = n_orbitals[ik, isp]

                    # first read all real components for given k, then read
                    # imaginary parts
                    if (first_real_part_matrix):

                        for i in range(n_orb):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in range(istart, n_orb):
                                hopping[ik, isp, i, j] = R.next()

                        for i in range(n_orb):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in range(istart, n_orb):
                                hopping[ik, isp, i, j] += R.next() * 1j
                                if ((only_upper_triangle)and(i != j)):
                                    hopping[ik, isp, j, i] = hopping[
                                        ik, isp, i, j].conjugate()

                    else:  # read (real,im) tuple

                        for i in range(n_orb):
                            if (only_upper_triangle):
                                istart = i
                            else:
                                istart = 0
                            for j in range(istart, n_orb):
                                hopping[ik, isp, i, j] = R.next()
                                hopping[ik, isp, i, j] += R.next() * 1j

                                if ((only_upper_triangle)and(i != j)):
                                    hopping[ik, isp, j, i] = hopping[
                                        ik, isp, i, j].conjugate()
            # keep some things that we need for reading parproj:
            things_to_set = ['n_shells', 'shells', 'n_corr_shells', 'corr_shells',
                             'n_spin_blocs', 'n_orbitals', 'n_k', 'SO', 'SP', 'energy_unit']
            for it in things_to_set:
                setattr(self, it, locals()[it])
        except StopIteration:  # a more explicit error if the file is corrupted.
            raise "HK Converter : reading file dft_file failed!"

        R.close()

        # Save to the HDF5:
        with HDFArchive(self.hdf_file, 'a') as ar:
            if not (self.dft_subgrp in ar):
                ar.create_group(self.dft_subgrp)
            things_to_save = ['energy_unit', 'n_k', 'k_dep_projection', 'SP', 'SO', 'charge_below', 'density_required',
                          'symm_op', 'n_shells', 'shells', 'n_corr_shells', 'corr_shells', 'use_rotations', 'rot_mat',
                          'rot_mat_time_inv', 'n_reps', 'dim_reps', 'T', 'n_orbitals', 'proj_mat', 'bz_weights', 'hopping',
                          'n_inequiv_shells', 'corr_to_inequiv', 'inequiv_to_corr']
            for it in things_to_save:
                ar[self.dft_subgrp][it] = locals()[it]