Ejemplo n.º 1
0
def test_onnx():
    trt = pytrt.Trt()
    onnxModel = "../models/model.onnx"
    engineFile = ""
    customOutput = []
    maxBatchSize = 1
    calibratorData = [np.ones(28*28)]
    mode = 2
    trt.CreateEngine( onnxModel, engineFile,customOutput,maxBatchSize,mode,calibratorData)
    input_numpy_array = np.zeros(28*28)
    trt.DoInference(input_numpy_array) # slightly different from c++
    output_numpy_array = trt.GetOutput("Plus214_Output_0")
Ejemplo n.º 2
0
def export_trt_model(onnxModel, engineFile, input_numpy_array):
    r"""
    Export a model to trt format.
    """

    trt = pytrt.Trt()

    customOutput = []
    maxBatchSize = 1
    calibratorData = []
    mode = 2
    trt.CreateEngine(onnxModel, engineFile, customOutput, maxBatchSize, mode,
                     calibratorData)
    trt.DoInference(input_numpy_array)  # slightly different from c++
    return 0
Ejemplo n.º 3
0
    # Apply pre-processing to image.
    img = cv2.resize(original_image, (image_width, image_height), interpolation=cv2.INTER_CUBIC)
    img = img.astype("float32").transpose(2, 0, 1)[np.newaxis]  # (1, 3, h, w)
    return img


def normalize(nparray, order=2, axis=-1):
    """Normalize a N-D numpy array along the specified axis."""
    norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)
    return nparray / (norm + np.finfo(np.float32).eps)


if __name__ == "__main__":
    args = get_parser().parse_args()

    trt = pytrt.Trt()

    onnxModel = ""
    engineFile = args.model_path
    customOutput = []
    maxBatchSize = 1
    calibratorData = []
    mode = 2
    trt.CreateEngine(onnxModel, engineFile, customOutput, maxBatchSize, mode, calibratorData)

    if not os.path.exists(args.output): os.makedirs(args.output)

    if args.input:
        if os.path.isdir(args.input[0]):
            args.input = glob.glob(os.path.expanduser(args.input[0]))
            assert args.input, "The input path(s) was not found"