Ejemplo n.º 1
0
def download_client_types_records(
        symbols: Union[List, str],
        write_to_csv: bool = False,
        include_jdate: bool = False,
        base_path: str = config.CLIENT_TYPES_DATA_BASE_PATH
):
    if symbols == "all":
        symbols = symbols_data.all_symbols()
    elif isinstance(symbols, str):
        symbols = [symbols]

    df_list = {}

    with ThreadPoolExecutor(max_workers=10) as executor:
        for symbol in symbols:
            ticker_index = symbols_data.get_ticker_index(symbol)
            _handle_ticker_index(symbol, ticker_index)
            future = executor.submit(
                download_ticker_client_types_record,
                ticker_index
            )
            df: pd.DataFrame = future.result()
            _adjust_data_frame(df, include_jdate)
            df_list[symbol] = df
            if write_to_csv:
                Path(base_path).mkdir(parents=True, exist_ok=True)
                df.to_csv(f'{base_path}/{symbol}.csv')
    return df_list
Ejemplo n.º 2
0
def download_history_price(symbols: Union[List, str],
                           write_to_csv: bool = False,
                           include_jdate: bool = False,
                           base_path: str = config.DATA_BASE_PATH):
    if symbols == "all":
        symbols = symbols_data.all_symbols()
    elif isinstance(symbols, str):
        symbols = [symbols]

    df_list = {}

    with ThreadPoolExecutor(max_workers=10) as executor:
        for symbol in symbols:
            ticker_index = symbols_data.get_ticker_index(symbol)
            _handle_ticker_index(symbol, ticker_index)
            future = executor.submit(download_ticker_daily_record,
                                     ticker_index)
            df: pd.DataFrame = future.result()
            df = df.iloc[::-1]
            df = df.rename(columns=FIELD_MAPPINGS)
            df = df.drop(columns=["<PER>", "<OPEN>", "<TICKER>"])
            _adjust_data_frame(df, include_jdate)
            df_list[symbol] = df
            if write_to_csv:
                Path(base_path).mkdir(parents=True, exist_ok=True)
                df.to_csv(f'{base_path}/{symbol}.csv')

    if len(df_list) != len(symbols):
        print("Warning, download did not complete, re-run the code")
    return df_list
Ejemplo n.º 3
0
def download(symbols: Union[List, str],
             write_to_csv: bool = False,
             base_path: str = config.DATA_BASE_PATH):
    if symbols == "all":
        symbols = symbols_data.all_symbols()
    elif isinstance(symbols, str):
        symbols = [symbols]

    df_list = {}

    with ThreadPoolExecutor(max_workers=10) as executor:
        for symbol in symbols:
            future = executor.submit(download_ticker_daily_record,
                                     symbols_data.get_ticker_index(symbol))
            df: pd.DataFrame = future.result()
            if df.shape[0] == 0:
                continue
            df = df.iloc[::-1]
            df = df.rename(columns=FIELD_MAPPINGS)
            df = df.drop(columns=["<PER>", "<OPEN>", "<TICKER>"])
            df.date = pd.to_datetime(df.date, format="%Y%m%d")
            df.set_index("date", inplace=True)
            df_list[symbol] = df

            if write_to_csv:
                Path(base_path).mkdir(parents=True, exist_ok=True)
                df.to_csv(f'{base_path}/{symbol}.csv')

    if len(df_list) != len(symbols):
        print("Warning, download did not complete, re-run the code")
    return df_list
Ejemplo n.º 4
0
def add_new_symbols():
    try:
        symbol_names = symbols_data.all_symbols()
    except:
        raise TSECrawlException(
            'دریافت اطلاعات با مشکل رو به رو شد! پس از مدتی دوباره تلاش کنید.')

    symbols = []
    for symbol in symbol_names:
        if not Symbol.objects.filter(symbol=symbol).count():
            symbols.append(Symbol.objects.create(symbol=symbol))
    return symbols
Ejemplo n.º 5
0
def download(symbols: Union[List, str],
             write_to_csv: bool = False,
             include_jdate: bool = False,
             base_path: str = config.DATA_BASE_PATH):
    if symbols == "all":
        symbols = symbols_data.all_symbols()
    elif isinstance(symbols, str):
        symbols = [symbols]

    df_list = {}

    with ThreadPoolExecutor(max_workers=10) as executor:
        for symbol in symbols:
            ticker_index = symbols_data.get_ticker_index(symbol)
            if ticker_index is None:
                ticker_index = get_symbol_id(symbol)
                if ticker_index is None:
                    raise Exception("Can not found ticker name")
                else:
                    symbols_data.append_symbol_to_file(ticker_index, symbol)

            future = executor.submit(download_ticker_daily_record,
                                     ticker_index)
            df: pd.DataFrame = future.result()
            if df.shape[0] == 0:
                continue
            df = df.iloc[::-1]
            df = df.rename(columns=FIELD_MAPPINGS)
            df = df.drop(columns=["<PER>", "<OPEN>", "<TICKER>"])
            df.date = pd.to_datetime(df.date, format="%Y%m%d")
            if include_jdate:
                df['jdate'] = ""
                df.jdate = df.date.apply(lambda gregorian: jdatetime.date.
                                         fromgregorian(date=gregorian))
            df.set_index("date", inplace=True)
            df_list[symbol] = df

            if write_to_csv:
                Path(base_path).mkdir(parents=True, exist_ok=True)
                df.to_csv(f'{base_path}/{symbol}.csv')

    if len(df_list) != len(symbols):
        print("Warning, download did not complete, re-run the code")
    return df_list
Ejemplo n.º 6
0
def download(
        symbols: Union[List, str],
        write_to_csv: bool = False,
        include_jdate: bool = False,
        base_path: str = config.DATA_BASE_PATH) -> Dict[str, pd.DataFrame]:
    if symbols == "all":
        symbols = symbols_data.all_symbols()
    elif isinstance(symbols, str):
        symbols = [symbols]

    df_list = {}
    future_to_symbol = {}
    with futures.ThreadPoolExecutor(max_workers=10) as executor:
        session = requests_retry_session()
        for symbol in symbols:
            if symbol.isnumeric():
                ticker_index = symbol
            else:
                ticker_index = symbols_data.get_ticker_index(symbol)
                _handle_ticker_index(symbol, ticker_index)
            future = executor.submit(download_ticker_daily_record,
                                     ticker_index, session)
            future_to_symbol[future] = symbol
        for future in futures.as_completed(future_to_symbol):
            symbol = future_to_symbol[future]
            df: pd.DataFrame = future.result()
            df = df.iloc[::-1]
            df = df.rename(columns=translations.HISTORY_FIELD_MAPPINGS)
            df = df.drop(columns=["<PER>", "<TICKER>"])
            _adjust_data_frame(df, include_jdate)
            df_list[symbol] = df
            if write_to_csv:
                Path(base_path).mkdir(parents=True, exist_ok=True)
                df.to_csv(f'{base_path}/{symbol}.csv')

    if len(df_list) != len(symbols):
        print("Warning, download did not complete, re-run the code")
    session.close()
    return df_list