Ejemplo n.º 1
0
 def build_slice(self, node, start, stop, step=None):
     const_types = (int, type(None))
     try:
         if start:
             start = abstract_utils.get_atomic_python_constant(
                 start, const_types)
         if stop:
             stop = abstract_utils.get_atomic_python_constant(
                 stop, const_types)
         if step:
             step = abstract_utils.get_atomic_python_constant(
                 step, const_types)
     except abstract_utils.ConversionError:
         return self.primitive_class_instances[slice].to_variable(node)
     return abstract.ConcreteValue(slice(start, stop, step),
                                   self.primitive_classes[slice],
                                   self.vm).to_variable(node)
Ejemplo n.º 2
0
    def _constant_to_value(self, pyval, subst, get_node):
        """Create a BaseValue that represents a python constant.

    This supports both constant from code constant pools and PyTD constants such
    as classes. This also supports builtin python objects such as int and float.

    Args:
      pyval: The python or PyTD value to convert.
      subst: The current type parameters.
      get_node: A getter function for the current node.

    Returns:
      A Value that represents the constant, or None if we couldn't convert.
    Raises:
      NotImplementedError: If we don't know how to convert a value.
      TypeParameterError: If we can't find a substitution for a type parameter.
    """
        if pyval.__class__ is str:
            # We use a subclass of str, compat.BytesPy3, to mark Python 3
            # bytestrings, which are converted to abstract bytes instances.
            # compat.BytesType dispatches to this when appropriate.
            return abstract.ConcreteValue(pyval, self.str_type, self.vm)
        elif isinstance(pyval, compat.UnicodeType):
            return abstract.ConcreteValue(pyval, self.unicode_type, self.vm)
        elif isinstance(pyval, compat.BytesType):
            return abstract.ConcreteValue(pyval, self.bytes_type, self.vm)
        elif isinstance(pyval, bool):
            return self.true if pyval else self.false
        elif isinstance(pyval, int) and -1 <= pyval <= MAX_IMPORT_DEPTH:
            # For small integers, preserve the actual value (for things like the
            # level in IMPORT_NAME).
            return abstract.ConcreteValue(pyval, self.int_type, self.vm)
        elif isinstance(pyval, compat.LongType):
            # long is aliased to int
            return self.primitive_class_instances[int]
        elif pyval.__class__ in self.primitive_classes:
            return self.primitive_class_instances[pyval.__class__]
        elif pyval.__class__ is frozenset:
            instance = abstract.Instance(self.frozenset_type, self.vm)
            for element in pyval:
                instance.merge_instance_type_parameter(
                    self.vm.root_node, abstract_utils.T,
                    self.constant_to_var(element, subst, self.vm.root_node))
            return instance
        elif isinstance(pyval, (loadmarshal.CodeType, blocks.OrderedCode)):
            return abstract.ConcreteValue(
                pyval, self.primitive_classes[types.CodeType], self.vm)
        elif pyval is super:
            return special_builtins.Super(self.vm)
        elif pyval is object:
            return special_builtins.Object(self.vm)
        elif pyval.__class__ is type:
            try:
                return self.name_to_value(self._type_to_name(pyval), subst)
            except (KeyError, AttributeError):
                log.debug("Failed to find pytd", exc_info=True)
                raise
        elif isinstance(pyval, pytd.LateType):
            actual = self._load_late_type(pyval)
            return self._constant_to_value(actual, subst, get_node)
        elif isinstance(pyval, pytd.TypeDeclUnit):
            return self._create_module(pyval)
        elif isinstance(pyval, pytd.Module):
            mod = self.vm.loader.import_name(pyval.module_name)
            return self._create_module(mod)
        elif isinstance(pyval, pytd.Class):
            if pyval.name == "builtins.super":
                return self.vm.special_builtins["super"]
            elif pyval.name == "builtins.object":
                return self.object_type
            elif pyval.name == "types.ModuleType":
                return self.module_type
            elif pyval.name == "_importlib_modulespec.ModuleType":
                # Python 3's typeshed uses a stub file indirection to define ModuleType
                # even though it is exported via types.pyi.
                return self.module_type
            elif pyval.name == "types.FunctionType":
                return self.function_type
            else:
                module, dot, base_name = pyval.name.rpartition(".")
                # typing.TypingContainer intentionally loads the underlying pytd types.
                if (module not in ("typing", "typing_extensions")
                        and module in overlay_dict.overlays):
                    overlay = self.vm.import_module(module, module, 0)
                    if overlay.get_module(base_name) is overlay:
                        overlay.load_lazy_attribute(base_name)
                        return abstract_utils.get_atomic_value(
                            overlay.members[base_name])
                try:
                    cls = abstract.PyTDClass(base_name, pyval, self.vm)
                except mro.MROError as e:
                    self.vm.errorlog.mro_error(self.vm.frames, base_name,
                                               e.mro_seqs)
                    cls = self.unsolvable
                else:
                    if dot:
                        cls.module = module
                    cls.call_metaclass_init(get_node())
                return cls
        elif isinstance(pyval, pytd.Function):
            signatures = [
                function.PyTDSignature(pyval.name, sig, self.vm)
                for sig in pyval.signatures
            ]
            type_new = self.vm.lookup_builtin("builtins.type").Lookup(
                "__new__")
            if pyval is type_new:
                f_cls = special_builtins.TypeNew
            else:
                f_cls = abstract.PyTDFunction
            f = f_cls(pyval.name, signatures, pyval.kind, self.vm)
            f.is_abstract = pyval.is_abstract
            return f
        elif isinstance(pyval, pytd.ClassType):
            if pyval.cls:
                cls = pyval.cls
            else:
                # If pyval is a reference to a class in builtins or typing, we can fill
                # in the class ourselves. lookup_builtin raises a KeyError if the name
                # is not found.
                cls = self.vm.lookup_builtin(pyval.name)
                assert isinstance(cls, pytd.Class)
            return self.constant_to_value(cls, subst, self.vm.root_node)
        elif isinstance(pyval, pytd.NothingType):
            return self.empty
        elif isinstance(pyval, pytd.AnythingType):
            return self.unsolvable
        elif (isinstance(pyval, pytd.Constant)
              and isinstance(pyval.type, pytd.AnythingType)):
            # We allow "X = ... # type: Any" to declare X as a type.
            return self.unsolvable
        elif (isinstance(pyval, pytd.Constant)
              and isinstance(pyval.type, pytd.GenericType)
              and pyval.type.name == "builtins.type"):
            # `X: Type[other_mod.X]` is equivalent to `X = other_mod.X`.
            param, = pyval.type.parameters
            return self.constant_to_value(param, subst, self.vm.root_node)
        elif isinstance(pyval, pytd.UnionType):
            options = [
                self.constant_to_value(t, subst, self.vm.root_node)
                for t in pyval.type_list
            ]
            if len(options) > 1:
                return abstract.Union(options, self.vm)
            else:
                return options[0]
        elif isinstance(pyval, pytd.TypeParameter):
            constraints = tuple(
                self.constant_to_value(c, {}, self.vm.root_node)
                for c in pyval.constraints)
            bound = (pyval.bound and self.constant_to_value(
                pyval.bound, {}, self.vm.root_node))
            return abstract.TypeParameter(pyval.name,
                                          self.vm,
                                          constraints=constraints,
                                          bound=bound,
                                          module=pyval.scope)
        elif isinstance(pyval, abstract_utils.AsInstance):
            cls = pyval.cls
            if isinstance(cls, pytd.LateType):
                actual = self._load_late_type(cls)
                if not isinstance(actual, pytd.ClassType):
                    return self.unsolvable
                cls = actual.cls
            if isinstance(cls, pytd.ClassType):
                cls = cls.cls
            if isinstance(cls,
                          pytd.GenericType) and cls.name == "typing.ClassVar":
                param, = cls.parameters
                return self.constant_to_value(abstract_utils.AsInstance(param),
                                              subst, self.vm.root_node)
            elif isinstance(cls,
                            pytd.GenericType) or (isinstance(cls, pytd.Class)
                                                  and cls.template):
                # If we're converting a generic Class, need to create a new instance of
                # it. See test_classes.testGenericReinstantiated.
                if isinstance(cls, pytd.Class):
                    params = tuple(t.type_param.upper_value
                                   for t in cls.template)
                    cls = pytd.GenericType(base_type=pytd.ClassType(
                        cls.name, cls),
                                           parameters=params)
                if isinstance(cls.base_type, pytd.LateType):
                    actual = self._load_late_type(cls.base_type)
                    if not isinstance(actual, pytd.ClassType):
                        return self.unsolvable
                    base_cls = actual.cls
                else:
                    base_type = cls.base_type
                    assert isinstance(base_type, pytd.ClassType)
                    base_cls = base_type.cls
                assert isinstance(base_cls, pytd.Class), base_cls
                if base_cls.name == "builtins.type":
                    c, = cls.parameters
                    if isinstance(c, pytd.TypeParameter):
                        if not subst or c.full_name not in subst:
                            raise self.TypeParameterError(c.full_name)
                        # deformalize gets rid of any unexpected TypeVars, which can appear
                        # if something is annotated as Type[T].
                        return self.vm.annotations_util.deformalize(
                            self.merge_classes(subst[c.full_name].data))
                    else:
                        return self.constant_to_value(c, subst,
                                                      self.vm.root_node)
                elif isinstance(cls, pytd.TupleType):
                    content = tuple(
                        self.constant_to_var(abstract_utils.AsInstance(
                            p), subst, get_node()) for p in cls.parameters)
                    return abstract.Tuple(content, self.vm)
                elif isinstance(cls, pytd.CallableType):
                    clsval = self.constant_to_value(cls, subst,
                                                    self.vm.root_node)
                    return abstract.Instance(clsval, self.vm)
                else:
                    clsval = self.constant_to_value(base_cls, subst,
                                                    self.vm.root_node)
                    instance = abstract.Instance(clsval, self.vm)
                    num_params = len(cls.parameters)
                    assert num_params <= len(base_cls.template)
                    for i, formal in enumerate(base_cls.template):
                        if i < num_params:
                            node = get_node()
                            p = self.constant_to_var(
                                abstract_utils.AsInstance(cls.parameters[i]),
                                subst, node)
                        else:
                            # An omitted type parameter implies `Any`.
                            node = self.vm.root_node
                            p = self.unsolvable.to_variable(node)
                        instance.merge_instance_type_parameter(
                            node, formal.name, p)
                    return instance
            elif isinstance(cls, pytd.Class):
                assert not cls.template
                # This key is also used in __init__
                key = (abstract.Instance, cls)
                if key not in self._convert_cache:
                    if cls.name in ["builtins.type", "builtins.property"]:
                        # An instance of "type" or of an anonymous property can be anything.
                        instance = self._create_new_unknown_value("type")
                    else:
                        mycls = self.constant_to_value(cls, subst,
                                                       self.vm.root_node)
                        instance = abstract.Instance(mycls, self.vm)
                    log.info("New pytd instance for %s: %r", cls.name,
                             instance)
                    self._convert_cache[key] = instance
                return self._convert_cache[key]
            elif isinstance(cls, pytd.Literal):
                return self.constant_to_value(
                    self._get_literal_value(cls.value), subst,
                    self.vm.root_node)
            else:
                return self.constant_to_value(cls, subst, self.vm.root_node)
        elif (isinstance(pyval, pytd.GenericType)
              and pyval.name == "typing.ClassVar"):
            param, = pyval.parameters
            return self.constant_to_value(param, subst, self.vm.root_node)
        elif isinstance(pyval, pytd.GenericType):
            if isinstance(pyval.base_type, pytd.LateType):
                actual = self._load_late_type(pyval.base_type)
                if not isinstance(actual, pytd.ClassType):
                    return self.unsolvable
                base = actual.cls
            else:
                assert isinstance(pyval.base_type, pytd.ClassType), pyval
                base = pyval.base_type.cls
            assert isinstance(base, pytd.Class), base
            base_cls = self.constant_to_value(base, subst, self.vm.root_node)
            if not isinstance(base_cls, class_mixin.Class):
                # base_cls can be, e.g., an unsolvable due to an mro error.
                return self.unsolvable
            if isinstance(pyval, pytd.TupleType):
                abstract_class = abstract.TupleClass
                template = list(range(len(
                    pyval.parameters))) + [abstract_utils.T]
                combined_parameter = pytd_utils.JoinTypes(pyval.parameters)
                parameters = pyval.parameters + (combined_parameter, )
            elif isinstance(pyval, pytd.CallableType):
                abstract_class = abstract.CallableClass
                template = list(range(len(
                    pyval.args))) + [abstract_utils.ARGS, abstract_utils.RET]
                parameters = pyval.args + (pytd_utils.JoinTypes(
                    pyval.args), pyval.ret)
            else:
                abstract_class = abstract.ParameterizedClass
                if pyval.name == "typing.Generic":
                    pyval_template = pyval.parameters
                else:
                    pyval_template = base.template
                template = tuple(t.name for t in pyval_template)
                parameters = pyval.parameters
            assert (pyval.name in ("typing.Generic", "typing.Protocol")
                    or len(parameters) <= len(template))
            # Delay type parameter loading to handle recursive types.
            # See the ParameterizedClass.formal_type_parameters() property.
            type_parameters = abstract_utils.LazyFormalTypeParameters(
                template, parameters, subst)
            return abstract_class(base_cls, type_parameters, self.vm)
        elif isinstance(pyval, pytd.Literal):
            value = self.constant_to_value(
                self._get_literal_value(pyval.value), subst, self.vm.root_node)
            return abstract.LiteralClass(value, self.vm)
        elif isinstance(pyval, pytd.Annotated):
            return self.constant_to_value(pyval.base_type, subst,
                                          self.vm.root_node)
        elif pyval.__class__ is tuple:  # only match raw tuple, not namedtuple/Node
            return self.tuple_to_value([
                self.constant_to_var(item, subst, self.vm.root_node)
                for i, item in enumerate(pyval)
            ])
        else:
            raise NotImplementedError("Can't convert constant %s %r" %
                                      (type(pyval), pyval))
Ejemplo n.º 3
0
    def __init__(self, vm):
        super().__init__(vm)
        self.vm.convert = self  # to make constant_to_value calls below work
        self.pytd_convert = output.Converter(vm)

        # If set, allow construction of recursive values, setting the
        # self-referential field to Any
        self.recursion_allowed = False

        self._convert_cache = {}
        self._resolved_late_types = {}  # performance cache

        # Initialize primitive_classes to empty to allow constant_to_value to run.
        self.primitive_classes = ()

        # object_type is needed to initialize the primitive class values.
        self.object_type = self.constant_to_value(object)

        if self.vm.PY2:
            version_specific = [compat.UnicodeType]
        else:
            version_specific = [compat.BytesType]

        self.unsolvable = abstract.Unsolvable(self.vm)
        self.empty = abstract.Empty(self.vm)
        self.no_return = typing_overlay.NoReturn(self.vm)

        # Now fill primitive_classes with the real values using constant_to_value.
        primitive_classes = [
            int,
            float,
            str,
            object,
            compat.NoneType,
            complex,
            bool,
            slice,
            types.CodeType,
            compat.EllipsisType,
            compat.OldStyleClassType,
            super,
        ] + version_specific
        self.primitive_classes = {
            v: self.constant_to_value(v)
            for v in primitive_classes
        }
        self.primitive_class_names = [
            self._type_to_name(x) for x in self.primitive_classes
        ]
        self.none = abstract.ConcreteValue(
            None, self.primitive_classes[compat.NoneType], self.vm)
        self.true = abstract.ConcreteValue(True, self.primitive_classes[bool],
                                           self.vm)
        self.false = abstract.ConcreteValue(False,
                                            self.primitive_classes[bool],
                                            self.vm)
        self.ellipsis = abstract.ConcreteValue(
            Ellipsis, self.primitive_classes[compat.EllipsisType], self.vm)

        self.primitive_class_instances = {}
        for name, cls in self.primitive_classes.items():
            if name == compat.NoneType:
                # This is possible because all None instances are the same.
                # Without it pytype could not reason that "x is None" is always true, if
                # x is indeed None.
                instance = self.none
            elif name == compat.EllipsisType:
                instance = self.ellipsis
            else:
                instance = abstract.Instance(cls, self.vm)
            self.primitive_class_instances[name] = instance
            self._convert_cache[(abstract.Instance, cls.pytd_cls)] = instance

        self.none_type = self.primitive_classes[compat.NoneType]
        self.oldstyleclass_type = self.primitive_classes[
            compat.OldStyleClassType]
        self.super_type = self.primitive_classes[super]
        self.str_type = self.primitive_classes[str]
        self.int_type = self.primitive_classes[int]
        self.bool_type = self.primitive_classes[bool]

        self.list_type = self.constant_to_value(list)
        self.set_type = self.constant_to_value(set)
        self.frozenset_type = self.constant_to_value(frozenset)
        self.dict_type = self.constant_to_value(dict)
        self.type_type = self.constant_to_value(type)
        self.module_type = self.constant_to_value(types.ModuleType)
        self.function_type = self.constant_to_value(types.FunctionType)
        self.tuple_type = self.constant_to_value(tuple)
        self.generator_type = self.constant_to_value(types.GeneratorType)
        self.iterator_type = self.constant_to_value(compat.IteratorType)
        if self.vm.python_version >= (3, 5):
            self.coroutine_type = self.constant_to_value(compat.CoroutineType)
            self.awaitable_type = self.constant_to_value(compat.AwaitableType)
        if self.vm.python_version >= (3, 6):
            self.async_generator_type = self.constant_to_value(
                compat.AsyncGeneratorType)
        self.bool_values = {
            True: self.true,
            False: self.false,
            None: self.primitive_class_instances[bool],
        }
        if self.vm.PY2:
            self.unicode_type = self.primitive_classes[compat.UnicodeType]
            self.bytes_type = self.str_type
            self.next_attr = "next"
        else:
            self.unicode_type = self.str_type
            self.bytes_type = self.primitive_classes[compat.BytesType]
            self.next_attr = "__next__"