Ejemplo n.º 1
0
    def test_compare_gradientless_and_gradient_learning():
        seq = [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1]
        seqh = [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1]
        factors = []
        hidden_factors = []
        evidence = {}
        o_parameters = np.array([['a', 'b'], ['c', 'd']])
        h_parameters = np.array([['e', 'f'], ['g', 'h']])
        for i, (s, sh) in enumerate(zip(seq, seqh)):
            obs = DiscreteFactor(['o_{}'.format(i), 'h_{}'.format(i)], parameters=o_parameters)
            evidence['o_{}'.format(i)] = s
            evidence['h_{}'.format(i)] = sh
            factors.append(obs)
            if i < len(seq):
                hid = DiscreteFactor(['h_{}'.format(i), 'h_{}'.format(i + 1)], parameters=h_parameters)
                factors.append(hid)
                hidden_factors.append(hid)

        model = Model(factors)
        update_order = DistributeCollectProtocol(model)
        learn = LearnMrfParameters(model, update_order=update_order)
        learn.fit(evidence)
        print learn._optimizer_result
        #print learn.iterations
        ans1 = learn._optimizer_result[:2]

        print
        update_order = DistributeCollectProtocol(model)
        learn = LearnMrfParameters(model, update_order=update_order)
        fit_without_gradient(learn, evidence)
        print learn._optimizer_result
        #print learn.iterations
        ans2 = learn._optimizer_result[:2]
        assert_array_almost_equal(ans1[1], ans2[1], decimal=4)
        assert_array_almost_equal(ans1[0], ans2[0], decimal=4)
Ejemplo n.º 2
0
    def test_learn_with_gradient_binary(self):
        tc1 = 70
        tc2 = 14
        obs = [DiscreteFactor([(i, 2)], parameters=np.array(['m0', 'm1'])) for i in xrange(tc1 + tc2)]
        model = Model(obs)
        evidence = dict((i, 0 if i < tc1 else 1) for i in xrange(tc1 + tc2))
        print 'evidence', evidence
        print model.edges

        learner = LearnMrfParameters(model, prior=1.0)

        def nlog_posterior(x):
            c1 = tc1
            c2 = tc2
            x = x.reshape((2, 1))
            N = np.zeros((2, 1))
            Lamb = np.array([[1.0, 0], [0, 1.0]])
            lp = -0.5 * np.dot(np.dot((x - N).T, Lamb), (x - N))
            lp += -0.5 * x.shape[0] * np.log(2.0 * np.pi)
            lp += +0.5 * np.log(np.linalg.det((Lamb)))
            lp += np.dot(x.T, np.array([c1, c2])) - (c1 + c2) * np.log(sum(np.exp(x)))
            return -lp[0, 0]

        x0 = np.zeros(2)
        print 'zeros', x0
        expected_ans = scipy.optimize.fmin_l_bfgs_b(nlog_posterior, x0, approx_grad=True, pgtol=10.0**-10)
        actual_ans = learner.fit(evidence).result()
        print actual_ans
        print expected_ans
        self.assertAlmostEqual(actual_ans[0], expected_ans[1])
        assert_array_almost_equal(actual_ans[1], expected_ans[0], decimal=5)