Ejemplo n.º 1
0
def simulate(true_model, npp=1024, Ntr=1, add_noise=False):
    print()
    print(f'Nonlinear parameters:',
          f'{len(true_model.nlx.active) + len(true_model.nly.active)}')
    print(f'Parameters to estimate: {true_model.npar}')
    # set non-active coefficients to zero. Note order of input matters
    idx = np.setdiff1d(np.arange(true_model.E.size), true_model.nlx.active)
    idy = np.setdiff1d(np.arange(true_model.F.size), true_model.nly.active)
    true_model.E.flat[idx] = 0
    true_model.F.flat[idy] = 0

    # get predictable random numbers. https://dilbert.com/strip/2001-10-25
    np.random.seed(10)
    # shape of u from multisine: (R,P*npp)
    u, lines, freq = multisine(N=npp, P=P, R=R, lines=kind, rms=RMSu)

    # Transient: Add Ntr periods before the start of each realization. To
    # generate steady state data.
    T1 = np.r_[npp * Ntr, np.r_[0:(R - 1) * P * npp + 1:P * npp]]
    _, yorig, _ = true_model.simulate(u.ravel(), T1=T1)
    u = u.reshape((R, P, npp)).transpose((2, 0, 1))[:, None]  # (npp,m,R,P)
    y = yorig.reshape((R, P, npp, p)).transpose((2, 3, 0, 1))

    # Add colored noise to the output. randn generate white noise
    if add_noise:
        np.random.seed(10)
        noise = 1e-3 * np.std(y[:, -1, -1]) * np.random.randn(*y.shape)
        # Do some filtering to get colored noise
        noise[1:-2] += noise[2:-1]
        y += noise

    return {'y': y, 'u': u, 'lines': lines, 'freq': freq}
Ejemplo n.º 2
0
def simulate(true_model, npp=1024, Ntr=1, Rest=2, add_noise=False):
    print()
    print(f'Nonlinear parameters:',
          f'{len(true_model.nlx.active) + len(true_model.nly.active)}')
    print(f'Parameters to estimate: {true_model.npar}')
    # set non-active coefficients to zero. Note order of input matters
    idx = np.setdiff1d(np.arange(true_model.E.size), true_model.nlx.active)
    idy = np.setdiff1d(np.arange(true_model.F.size), true_model.nly.active)
    true_model.E.flat[idx] = 0
    true_model.F.flat[idy] = 0

    # get predictable random numbers. https://dilbert.com/strip/2001-10-25
    np.random.seed(10)
    # shape of u from multisine: (R,P*npp)
    u, lines, freq = multisine(N=npp, P=P, R=R, lines=kind, rms=RMSu)

    # Transient: Add Ntr periods before the start of each realization. To
    # generate steady state data.
    T1 = np.r_[npp * Ntr, np.r_[0:(R - 1) * P * npp + 1:P * npp]]
    _, yorig, _ = true_model.simulate(u.ravel(), T1=T1)
    u = u.reshape((R, P, npp)).transpose((2, 0, 1))[:, None]  # (npp,m,R,P)
    y = yorig.reshape((R, P, npp, p)).transpose((2, 3, 0, 1))

    # Add colored noise to the output. randn generate white noise
    if add_noise:
        np.random.seed(10)
        noise = 1e-3 * np.std(y[:, -1, -1]) * np.random.randn(*y.shape)
        # Do some filtering to get colored noise
        noise[1:-2] += noise[2:-1]
        y += noise

    ## START of Identification ##
    # partitioning the data. Use last period of two last realizations.
    # test for performance testing and val for model selection
    utest = u[:, :, -1, -1]
    ytest = y[:, :, -1, -1]
    uval = u[:, :, -2, -1]
    yval = y[:, :, -2, -1]
    # all other realizations are used for estimation
    uest = u[..., :Rest, :]
    yest = y[..., :Rest, :]
    # noise estimate over periods. This sets the performace limit for the
    # estimated model
    covY = covariance(yest)

    # create signal object
    sig = Signal(uest, yest, fs=fs)
    sig.lines = lines
    # plot periodicity for one realization to verify data is steady state
    # sig.periodicity()
    # Calculate BLA, total- and noise distortion. Used for subspace
    # identification
    sig.bla()
    # average signal over periods. Used for training of PNLSS model
    um, ym = sig.average()

    return Data(sig, uest, yest, uval, yval, utest, ytest, um, ym, covY, freq,
                lines, npp, Ntr)
Ejemplo n.º 3
0
nldof = np.argwhere(w).item()
ndof = M.shape[0]
# Fixed contact and free natural frequencies (rad/s).
om_fixed = data['om_fixed'].squeeze()
om_free = data['om_free'].squeeze()

#data2 = loadmat('data/b4_A1_up1_ms_full.mat')
#u = data2['u'].squeeze()
#freq = data2['freq'].squeeze()
#fs = data2['fs'].item()
#dt = 1/fs
#nsint = len(u)
#Ntint = nsint

np.random.seed(0)
u, lines, freq = multisine(f0, f1, N=Ntint, fs=fsint, R=R, P=P)
fext = np.zeros((nsint, ndof))

nls = NLS(Tanhdryfriction(eps=eps, w=w, kt=muN))
sys = Newmark(M, C, K, nls)
for A in Avec:
    fext[:, fdof] = A * u.ravel()
    print(f'Newmark started with ns: {nsint}, A: {A}')
    try:
        x, xd, xdd = sys.integrate(fext,
                                   dt,
                                   x0=None,
                                   v0=None,
                                   sensitivity=False)
        if scan:
            np.savez(f'data/scan_A{A}.npz',
Ejemplo n.º 4
0
# excitation signal
RMSu = 0.05  # Root mean square value for the input signal
npp = 2048  # Number of samples
R = 3  # Number of phase realizations (one for validation and one for
# testing)
P = 3  # Number of periods
kind = 'Odd'  # 'Full','Odd','SpecialOdd', or 'RandomOdd': kind of multisine
m = D.shape[1]  # number of inputs
p = C.shape[0]  # number of outputs
fs = 1  # normalized sampling rate
Ntr = 2
if True:
    # get predictable random numbers. https://dilbert.com/strip/2001-10-25
    np.random.seed(10)
    # shape of u from multisine: (R,P*npp)
    u, lines, freq = multisine(N=npp, P=P, R=R, lines=kind, rms=RMSu)
    # if multiple input is required, this will copy u m times

    # Transient: Add one period before the start of each realization. To generate
    # steady state data.
    T1 = np.r_[npp * Ntr, np.r_[0:(R - 1) * P * npp + 1:P * npp]]
    _, yorig, _ = true_model.simulate(u.ravel(), T1=T1)
    print(norm(yorig))
    u = u.reshape((R, P, npp)).transpose((2, 0, 1))[:, None]  # (npp,m,R,P)
    y = yorig.reshape((R, P, npp, p), order='C').transpose((2, 3, 0, 1))

    #y = yorig.reshape((R,P,npp)).transpose((2,0,1))[:,None]
    # or in F order:
    # y2 = yorig.reshape((npp,P,R,p),order='F').transpose((0,3,2,1))

    # Add colored noise to the output. randn generate white noise
Ejemplo n.º 5
0
# euler discretization
Ed[ndof + nldof] = -muN * dt

dmodel = NLSS(dsys.A, dsys.B, dsys.C, dsys.D, Ed, Fd, dt=dsys.dt)
dmodel.add_nl(nlx=nlx, nly=nly)

# newmark
nls = nmNLS(nmTanhdryfriction(eps=eps, w=w, kt=muN))
nls = nmNLS(nmPolynomial(exp=exponent, w=w, k=muN))

# nls = None
sys = Newmark(M, C, K, nls)
nm = False

np.random.seed(0)
ud, linesd, freqd = multisine(f1, f2, N=nppint, fs=fsint, R=R, P=P)
fext = np.zeros((nsint, ndof))

for A in Avec:
    print(f'Discrete started with ns: {nsint}, A: {A}, R: {R}, P: {P}, '
          f'upsamp: {upsamp}, eps:{eps}')
    # Transient: Add periods before the start of each realization. To generate
    # steady state data.
    T1 = np.r_[npp * Ntr, np.r_[0:(R - 1) * P * nppint + 1:P * nppint]]
    fext[:, fdof] = A * ud.ravel()
    _, yd, xd = dmodel.simulate(fext, T1=T1)
    yc, xc, uc, linesc = simulate_cont(cmodel, A, tc)

    try:
        ynm, ydnm, yddnm = sys.integrate(fext,
                                         dt,
Ejemplo n.º 6
0
pol1 = Polynomial(w=[1, 0], exp=3, k=mu1)
pol2 = Polynomial(w=[0, 1], exp=3, k=mu2)
nls = NLS([pol1, pol2])
#nls = NLS()

f0 = 1e-4 / 2 / np.pi
f1 = 5 / 2 / np.pi
fs = 10
T = 100
ns = fs * T
t = np.arange(ns) / fs
# t = np.linspace(0, T, T*fs, endpoint=False)
u = chirp(t, f0=f0, f1=f1, t1=T, method='linear')

u, lines, freq = multisine(f0, f1, N=1024, fs=fs, R=4, P=4)
ns = 1024 * 4 * 4
t = np.arange(ns) / fs
fdof = 0
fext = np.zeros((ns, ndof))
fext[:, fdof] = u.ravel()

sys = Newmark(M, C, K, nls)
dt = t[1] - t[0]
x, xd, xdd = sys.integrate(fext, dt, x0=0, v0=0, sensitivity=False)

plt.figure()
plt.plot(t, x, label=r'$x_1$')
#plt.plot(t, x, '-r', label=r'$x_2$')
plt.xlabel('Time (t)')
plt.ylabel('Displacement (m)')
Ejemplo n.º 7
0
        plt.ylabel('Amplitude (dB)')
        plt.title(f'Phase realization {i+1}')
        plt.subplot(2,2,3+i)
        plt.plot(np.angle(U),'+')
        plt.xlabel('Frequency line')
        plt.ylabel('Phase (rad)')
        plt.title(f'Phase realization {i+1}')


# Generate two realizations of a full multisine with 1000 samples and
# excitation up to one third of the Nyquist frequency
N = 1000  # One thousand samples
kind = 'full'  # Full multisine
f2 = round(N//6)  # Excitation up to one sixth of the sample frequency
R = 2   # Two phase realizations
u, lines, freq = multisine(f2=f2,N=N,lines=kind,R=R)
# Check spectra
plot(u)
# The two realizations have the same amplitude spectrum, but different phase
# realizations (uniformly distributed between [-π,π))

# Generate a random odd multisine where the excited odd lines are split in
# groups of three consecutive lines and where one line is randomly chosen in
# each group to be a detection line (i.e. without excitation)
N = 1000
kind = 'oddrandom'
f2 = round(N//6)
R = 1
# One out of three consecutive odd lines is randomly selected to be a detection line
ngroup = 3
u1,lines, freq = multisine(f2=f2,N=N,lines=kind,R=R,ngroup=ngroup)