Ejemplo n.º 1
0
    return prediction


def predict_batch_from_model(patches, model):
    """Predict which pixels are tumor.

    input: patch: `batch_size`x256x256x3, rgb image
    input: model: keras model
    output: prediction: 256x256x1, per-pixel tumor probability
    """
    predictions = model.predict(patches)
    predictions = predictions[:, :, :, 1]
    return predictions


train_generator = generate_tiles_fast(train_samples, 32, shuffle=False)
validation_generator = generate_tiles_fast(validation_samples,
                                           32,
                                           shuffle=False)
train_steps = len(train_samples) // BATCH_SIZE
validation_steps = len(validation_samples) // BATCH_SIZE

#train_predictions = model.predict_generator(train_generator, steps= len(train_samples)//BATCH_SIZE)

#validation_predictions = model.predict_generator(validation_generator,
#                                                 steps= len(validation_samples)//BATCH_SIZE,
#                                                 callbacks=[TQDMCallback()])
#print(validation_predictions.shape)


#train_predictions = np.argmax(predictions, axis=-1) #multiple categories
Ejemplo n.º 2
0

def predict_batch_from_model(patches, model):
    """Predict which pixels are tumor.

    input: patch: `batch_size`x256x256x3, rgb image
    input: model: keras model
    output: prediction: 256x256x1, per-pixel tumor probability
    """
    predictions = model.predict(patches)
    predictions = predictions[:, :, :, 1]
    return predictions


train_generator = generate_tiles_fast(train_samples.sample(32,
                                                           random_state=42),
                                      32,
                                      shuffle=True)
validation_generator = generate_tiles_fast(validation_samples.sample(
    32, random_state=42),
                                           32,
                                           shuffle=True)

filepath = "fast-allsamples-keras-improvement-{epoch:02d}-{val_acc:.2f}.hdf"
checkpoint = ModelCheckpoint(filepath,
                             monitor='val_acc',
                             verbose=1,
                             save_best_only=True,
                             mode='max')
callbacks_list = [checkpoint]

model.fit_generator(train_generator,