Ejemplo n.º 1
0
import numpy as np
from pywarpx import picmi

constants = picmi.constants

nx = 64
ny = 64

xmin = -20.e-6
ymin = -20.e-6
xmax = +20.e-6
ymax = +20.e-6

uniform_plasma = picmi.UniformDistribution(
    density=1.e25,
    upper_bound=[0., None, None],
    directed_velocity=[0.1 * constants.c, 0., 0.])

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=uniform_plasma)

grid = picmi.Cartesian2DGrid(
    number_of_cells=[nx, ny],
    lower_bound=[xmin, ymin],
    upper_bound=[xmax, ymax],
    lower_boundary_conditions=['periodic', 'periodic'],
    upper_boundary_conditions=['periodic', 'periodic'],
    moving_window_velocity=[0., 0., 0.],
    warpx_max_grid_size=32)
Ejemplo n.º 2
0
grid = picmi.Cartesian3DGrid(
    number_of_cells=[nx, ny, nz],
    lower_bound=[xmin, ymin, zmin],
    upper_bound=[xmax, ymax, zmax],
    lower_boundary_conditions=['periodic', 'periodic', 'open'],
    upper_boundary_conditions=['periodic', 'periodic', 'open'],
    moving_window_velocity=moving_window_velocity,
    warpx_max_grid_size=32,
    warpx_coord_sys=0)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1)

beam_distribution = picmi.UniformDistribution(
    density=1.e23,
    lower_bound=[-20.e-6, -20.e-6, -150.e-6],
    upper_bound=[+20.e-6, +20.e-6, -100.e-6],
    directed_velocity=[0., 0., 1.e9])

plasma_distribution = picmi.UniformDistribution(
    density=1.e22,
    lower_bound=[-200.e-6, -200.e-6, 0.],
    upper_bound=[+200.e-6, +200.e-6, None],
    fill_in=True)

beam = picmi.Species(particle_type='electron',
                     name='beam',
                     initial_distribution=beam_distribution)
plasma = picmi.Species(particle_type='electron',
                       name='plasma',
                       initial_distribution=plasma_distribution)
Ejemplo n.º 3
0
import numpy as np
from pywarpx import picmi

nr = 64
nz = 64

rmin = 0.e0
zmin = -20.e-6
rmax = +20.e-6
zmax = +20.e-6

uniform_plasma = picmi.UniformDistribution(density=1.e25,
                                           upper_bound=[None, None, 0.],
                                           directed_velocity=[0., 0., 0.1])

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=uniform_plasma)

grid = picmi.CylindricalGrid(
    number_of_cells=[nr, nz],
    lower_bound=[rmin, zmin],
    upper_bound=[rmax, zmax],
    lower_boundary_conditions=['dirichlet', 'periodic'],
    upper_boundary_conditions=['dirichlet', 'periodic'],
    moving_window_velocity=[0., 0.],
    warpx_max_grid_size=32)

solver = picmi.ElectromagneticSolver(grid=grid, cfl=1.)

sim = picmi.Simulation(solver=solver,
Ejemplo n.º 4
0
ymin = 0.0
xmax = D_CA
ymax = D_CA / nx * ny

number_per_cell_each_dim = [32, 16]

##########################
# physics components
##########################

v_rms_elec = np.sqrt(constants.kb * T_ELEC / constants.m_e)
v_rms_ion = np.sqrt(constants.kb * T_INERT / M_ION)

uniform_plasma_elec = picmi.UniformDistribution(
    density = PLASMA_DENSITY,
    upper_bound = [None] * 3,
    rms_velocity = [v_rms_elec] * 3,
    directed_velocity = [0.] * 3
)

uniform_plasma_ion = picmi.UniformDistribution(
    density = PLASMA_DENSITY,
    upper_bound = [None] * 3,
    rms_velocity = [v_rms_ion] * 3,
    directed_velocity = [0.] * 3
)

electrons = picmi.Species(
    particle_type='electron', name='electrons',
    initial_distribution=uniform_plasma_elec
)
ions = picmi.Species(
Ejemplo n.º 5
0
        np.cos(laser_polarization),
        np.sin(laser_polarization), 0.
    ],
    propagation_direction=[0, 0, 1],
    E0=laser_a0 * 2. * np.pi * constants.m_e * constants.c**2 /
    (constants.q_e *
     laser_wavelength))  # Maximum amplitude of the laser field (in V/m)

laser_antenna = picmi.LaserAntenna(
    position=[0., 0., laser_injection_loc],  # This point is on the laser plane
    normal_vector=[0., 0., 1.])  # The plane normal direction

# --- plasma

uniform_plasma = picmi.UniformDistribution(density=plasma_density,
                                           lower_bound=plasma_min,
                                           upper_bound=plasma_max,
                                           fill_in=True)

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=uniform_plasma)

##########################
# numerics components
##########################

grid = picmi.Cartesian3DGrid(
    number_of_cells=[nx, ny, nz],
    lower_bound=[xmin, ymin, zmin],
    upper_bound=[xmax, ymax, zmax],
    lower_boundary_conditions=['periodic', 'periodic', 'open'],
Ejemplo n.º 6
0
#################################
############ NUMERICS ###########
#################################
serialize_initial_conditions = 1
verbose = 1
cfl = 1.0

# Order of particle shape factors
particle_shape = 1

#################################
############ PLASMA #############
#################################

elec_dist = picmi.UniformDistribution(
    density=plasma_density,
    rms_velocity=[elec_rms_velocity] * 3,
    directed_velocity=[elec_rms_velocity, 0., 0.])

ion_dist = picmi.UniformDistribution(
    density=plasma_density,
    rms_velocity=[ion_rms_velocity] * 3,
)

electrons = picmi.Species(
    particle_type='electron',
    name='electron',
    warpx_do_not_deposit=1,
    initial_distribution=elec_dist,
)
ions = picmi.Species(particle_type='H',
                     name='ion',
Ejemplo n.º 7
0
xmin = -125e-6
ymin = -125e-6
zmin = -149e-6
xmax = 125e-6
ymax = 125e-6
zmax = 1e-6

##########################
# physics components
##########################

uniform_plasma_elec = picmi.UniformDistribution(
    density=1e23,  # number of electrons per m^3
    lower_bound=[-1e-5, -1e-5, -149e-6],
    upper_bound=[1e-5, 1e-5, -129e-6],
    directed_velocity=[0., 0., 2000. * picmi.constants.c
                       ]  # uth the std of the (unitless) momentum
)

electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=uniform_plasma_elec,
                          warpx_save_particles_at_xhi=1,
                          warpx_save_particles_at_eb=1)

##########################
# numerics components
##########################

grid = picmi.Cartesian3DGrid(
Ejemplo n.º 8
0
density = 2.e24
epsilon0 = 0.001 * constants.c
epsilon1 = 0.001 * constants.c
epsilon2 = 0.001 * constants.c
w0 = 5.e-6
n_osc_z = 3

# Wave vector of the wave
k0 = 2. * np.pi * n_osc_z / (zmax - zmin)

# Plasma frequency
wp = np.sqrt((density * constants.q_e**2) / (constants.m_e * constants.ep0))
kp = wp / constants.c

uniform_plasma = picmi.UniformDistribution(density=density,
                                           upper_bound=[+18e-6, +18e-6, None],
                                           directed_velocity=[0., 0., 0.])

momentum_expressions = [
    """+ epsilon0/kp*2*x/w0**2*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
                           - epsilon1/kp*2/w0*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
                           + epsilon1/kp*4*x**2/w0**3*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
                           - epsilon2/kp*8*x/w0**2*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
                           + epsilon2/kp*8*x*(x**2-y**2)/w0**4*exp(-(x**2+y**2)/w0**2)*sin(k0*z)""",
    """+ epsilon0/kp*2*y/w0**2*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
                           + epsilon1/kp*4*x*y/w0**3*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
                           + epsilon2/kp*8*y/w0**2*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
                           + epsilon2/kp*8*y*(x**2-y**2)/w0**4*exp(-(x**2+y**2)/w0**2)*sin(k0*z)""",
    """- epsilon0/kp*k0*exp(-(x**2+y**2)/w0**2)*cos(k0*z)
                           - epsilon1/kp*k0*2*x/w0*exp(-(x**2+y**2)/w0**2)*cos(k0*z)
                           - epsilon2/kp*k0*4*(x**2-y**2)/w0**2*exp(-(x**2+y**2)/w0**2)*cos(k0*z)"""
Ejemplo n.º 9
0
    warpx_blocking_factor=blocking_factor,
    refined_regions=[[
        1, [xmin_refined, zmin_refined], [xmax_refined, zmax_refined]
    ]])

# Particles: plasma electrons
plasma_density = 2e23
plasma_xmin = -20e-06
plasma_ymin = None
plasma_zmin = 10e-06
plasma_xmax = 20e-06
plasma_ymax = None
plasma_zmax = None
uniform_distribution = picmi.UniformDistribution(
    density=plasma_density,
    lower_bound=[plasma_xmin, plasma_ymin, plasma_zmin],
    upper_bound=[plasma_xmax, plasma_ymax, plasma_zmax],
    fill_in=True)
electrons = picmi.Species(particle_type='electron',
                          name='electrons',
                          initial_distribution=uniform_distribution)

# Particles: beam electrons
q_tot = 1e-12
x_m = 0.
y_m = 0.
z_m = -28e-06
x_rms = 0.5e-06
y_rms = 0.5e-06
z_rms = 0.5e-06
ux_m = 0.
Ejemplo n.º 10
0
solver = picmi.ElectrostaticSolver(
    grid=grid, method='Multigrid', required_precision=1e-6,
    warpx_self_fields_verbosity=0
)

#embedded_boundary = picmi.EmbeddedBoundary(
#    implicit_function="-max(max(x-12.5e-6,-12.5e-6-x),max(z+6.15e-5,-8.65e-5-z))"
#)

##########################
# physics components
##########################

uniform_plasma_elec = picmi.UniformDistribution(
    density = 1e15, # number of electrons per m^3
    lower_bound = [-1e-5, -1e-5, -125e-6],
    upper_bound = [1e-5, 1e-5, -120e-6],
    directed_velocity = [0., 0., 5e6] # uth the std of the (unitless) momentum
)

electrons = picmi.Species(
    particle_type='electron', name='electrons',
    initial_distribution=uniform_plasma_elec,
    warpx_save_particles_at_zhi=1,
    warpx_save_particles_at_zlo=1,
    warpx_reflection_model_zhi="0.5"
)

##########################
# diagnostics
##########################
Ejemplo n.º 11
0
    moving_window_velocity = None,
    warpx_max_grid_size = 32
)

solver = picmi.ElectrostaticSolver(
    grid=grid, method='Multigrid', required_precision=1e-6,
    warpx_self_fields_verbosity=0
)

##########################
# physics components
##########################

uniform_plasma_elec = picmi.UniformDistribution(
    density = 1e15,
    upper_bound = [None] * 3,
    rms_velocity = [np.sqrt(constants.kb * 1e3 / constants.m_e)] * 3,
    directed_velocity = [0.] * 3
)

electrons = picmi.Species(
    particle_type='electron', name='electrons',
    initial_distribution=uniform_plasma_elec,
    warpx_save_previous_position=True
)

##########################
# diagnostics
##########################

field_diag = picmi.ParticleDiagnostic(
    species=electrons,
Ejemplo n.º 12
0
    def setup_run(self):
        """Setup simulation components."""

        #######################################################################
        # Set geometry and boundary conditions                                #
        #######################################################################

        self.grid = picmi.Cartesian1DGrid(
            number_of_cells=[self.nz],
            warpx_max_grid_size=128,
            lower_bound=[0],
            upper_bound=[self.gap],
            lower_boundary_conditions=['dirichlet'],
            upper_boundary_conditions=['dirichlet'],
            lower_boundary_conditions_particles=['absorbing'],
            upper_boundary_conditions_particles=['absorbing'],
            warpx_potential_hi_z=self.voltage,
        )

        #######################################################################
        # Field solver                                                        #
        #######################################################################

        self.solver = picmi.ElectrostaticSolver(grid=self.grid,
                                                method='Multigrid',
                                                required_precision=1e-12,
                                                warpx_self_fields_verbosity=0)

        #######################################################################
        # Particle types setup                                                #
        #######################################################################

        self.electrons = picmi.Species(
            particle_type='electron',
            name='electrons',
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.elec_temp / constants.m_e)
                ] * 3,
            ))
        self.ions = picmi.Species(
            particle_type='He',
            name='he_ions',
            charge='q_e',
            mass=self.m_ion,
            initial_distribution=picmi.UniformDistribution(
                density=self.plasma_density,
                rms_velocity=[
                    np.sqrt(constants.kb * self.gas_temp / self.m_ion)
                ] * 3,
            ))

        #######################################################################
        # Collision  initialization                                           #
        #######################################################################

        cross_sec_direc = '../../../../warpx-data/MCC_cross_sections/He/'
        mcc_electrons = picmi.MCCCollisions(
            name='coll_elec',
            species=self.electrons,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            background_mass=self.ions.mass,
            scattering_processes={
                'elastic': {
                    'cross_section':
                    cross_sec_direc + 'electron_scattering.dat'
                },
                'excitation1': {
                    'cross_section': cross_sec_direc + 'excitation_1.dat',
                    'energy': 19.82
                },
                'excitation2': {
                    'cross_section': cross_sec_direc + 'excitation_2.dat',
                    'energy': 20.61
                },
                'ionization': {
                    'cross_section': cross_sec_direc + 'ionization.dat',
                    'energy': 24.55,
                    'species': self.ions
                },
            })

        mcc_ions = picmi.MCCCollisions(
            name='coll_ion',
            species=self.ions,
            background_density=self.gas_density,
            background_temperature=self.gas_temp,
            scattering_processes={
                'elastic': {
                    'cross_section': cross_sec_direc + 'ion_scattering.dat'
                },
                'back': {
                    'cross_section': cross_sec_direc + 'ion_back_scatter.dat'
                },
                # 'charge_exchange' : {
                #    'cross_section' : cross_sec_direc+'charge_exchange.dat'
                # }
            })

        #######################################################################
        # Initialize simulation                                               #
        #######################################################################

        self.sim = picmi.Simulation(
            solver=self.solver,
            time_step_size=self.dt,
            max_steps=self.max_steps,
            warpx_collisions=[mcc_electrons, mcc_ions],
            warpx_load_balance_intervals=self.max_steps // 5000,
            verbose=self.test)

        self.sim.add_species(self.electrons,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))
        self.sim.add_species(self.ions,
                             layout=picmi.GriddedLayout(
                                 n_macroparticle_per_cell=[self.seed_nppc],
                                 grid=self.grid))

        #######################################################################
        # Add diagnostics for the CI test to be happy                         #
        #######################################################################

        field_diag = picmi.FieldDiagnostic(
            name='diag1',
            grid=self.grid,
            period=0,
            data_list=['rho_electrons', 'rho_he_ions'],
            write_dir='.',
            warpx_file_prefix='Python_background_mcc_1d_plt')
        self.sim.add_diagnostic(field_diag)