class ProtPKPDExponentialFit(ProtPKPDFitBase):
    """ Fit a set of exponentials. The observed measurement is modelled as Y=sum_{i=1}^N c_i exp(-lambda_i * X).\n
Confidence intervals calculated by this fitting may be pessimistic because it assumes that all model parameters
are independent, which are not. Use Bootstrap estimates instead.\n
        Protocol created by http://www.kinestatpharma.com\n"""
    _label = 'fit exponentials'

    #--------------------------- DEFINE param functions --------------------------------------------
    def _defineParams(self, form, fullForm=True):
        self._defineParams1(form,"t","Cp")
        if fullForm:
            form.addParam('fitType', params.EnumParam, choices=["Linear","Logarithmic","Relative"], label="Fit mode", default=1,
                          help='Linear: sum (Cobserved-Cpredicted)^2\nLogarithmic: sum(log10(Cobserved)-log10(Cpredicted))^2\n'\
                               "Relative: sum ((Cobserved-Cpredicted)/Cobserved)^2")
            form.addParam('Nexp', params.IntParam, label="Number of exponentials", default=1,
                          help='Number of exponentials to fit')
        else:
            self.fitType=Integer()
            self.fitType.set(1)
            self.Nexp=Integer()
            self.Nexp.set(1)
        form.addParam('bounds', params.StringParam, label="Amplitude and time constant bounds", default="", expertLevel=LEVEL_ADVANCED,
                      help='Bounds for the c_i amplitudes and lambdas.\nExample 1: (0,10);(0,1e-2) -> c1 in (0,10), lambda1 in (0,1e-2)\n'\
                           'Example 2: (0,10);(0,1e-2);(0,1);(0,1e-1) -> c1 in (0,10), lambda1 in (0,1e-2), c2 in (0,1), lambda2 in (0,1e-1)')
        form.addParam('confidenceInterval', params.FloatParam, label="Confidence interval=", default=95, expertLevel=LEVEL_ADVANCED,
                      help='Confidence interval for the fitted parameters')
        if fullForm:
            form.addParam('reportX', params.StringParam, label="Evaluate at X=", default="", expertLevel=LEVEL_ADVANCED,
                          help='Evaluate the model at these X values\nExample 1: [0,5,10,20,40,100]\nExample 2: 0:0.55:10, from 0 to 10 in steps of 0.5')
        else:
            self.reportX=String()
            self.reportX.set("")

    def getListOfFormDependencies(self):
        return [self.predictor.get(), self.predicted.get(), self.fitType.get(), self.bounds.get()]

    def createModel(self):
        return PKPDExponentialModel()

    def setupFromFormParameters(self):
        self.model.Nexp=self.Nexp.get()

    #--------------------------- INFO functions --------------------------------------------
    def _warnings(self):
        warnings = []
        experiment = self.readExperiment(self.getInputExperiment().fnPKPD,show=False)
        incorrectList = experiment.getNonBolusDoses()
        if len(incorrectList)>0:
            warnings.append("This protocol is meant only for intravenous bolus regimens. Check the doses for %s"%(','.join(incorrectList)))
        return warnings

    def _validate(self):
        errors=ProtPKPDFitBase._validate(self)
        if self.Nexp.get()<1:
            errors.append("The number of exponentials has to be larger than 0")
        return errors
Ejemplo n.º 2
0
class ProtResMap(ProtAnalysis3D):
    """
    ResMap is software tool for computing the local resolution of 3D
    density maps studied in structural biology, primarily by cryo-electron
    microscopy (cryo-EM).
     
    Please find the manual at http://resmap.sourceforge.net 
    """
    _label = 'local resolution'

    INPUT_HELP = """ Input volume(s) for ResMap.
    Required volume properties:
        1. The particle must be centered in the volume.
        2. The background must not been masked out.
    Desired volume properties:
        1. The volume has not been filtered in any way (low-pass filtering, etc.)
        2. The volume has a realistic noise spectrum.
           This is sometimes obtained by so-called amplitude correction.
           While a similar effect is often obtained by B-factor sharpening,
           please make sure that the spectrum does not blow up near Nyquist.
    """
    
    def __init__(self, **kwargs):
        ProtAnalysis3D.__init__(self, **kwargs)
        self.histogramData = String()
        self.plotData = String() # store some values for later plot
             
    #--------------------------- DEFINE param functions --------------------------------------------   
    
    def _defineParams(self, form):
        form.addSection(label='Input')
        form.addParam('useSplitVolume', params.BooleanParam, default=False,
                      label="Use half volumes?",
                      help='Use to split volumes for gold-standard FSC.')
        form.addParam('inputVolume', params.PointerParam,
                      pointerClass='Volume', condition="not useSplitVolume",
                      label="Input volume", important=True,
                      help=self.INPUT_HELP)
        form.addParam('volumeHalf1', params.PointerParam,
                      label="Volume half 1", important=True,
                      pointerClass='Volume', condition="useSplitVolume",
                      help=self.INPUT_HELP)
        form.addParam('volumeHalf2', params.PointerParam,
                      pointerClass='Volume', condition="useSplitVolume",
                      label="Volume half 2", important=True,
                      help=self.INPUT_HELP)

        form.addParam('applyMask', params.BooleanParam, default=False,
                      label="Mask input volume?",
                      help="It is not necessary to provide ResMap with a mask "
                           "volume. The algorithm will attempt to estimate a "
                           "mask volume by low-pass filtering the input volume "
                           "and thresholding it using a heuristic procedure.\n"
                           "If the automated procedure does not work well for "
                           "your particle, you may provide a mask volume that "
                           "matches the input volume in size and format. "
                           "The mask volume should be a binary volume with zero "
                           "(0) denoting the background/solvent and some positive"
                           "value (0+) enveloping the particle.")
        form.addParam('maskVolume', params.PointerParam, label="Mask volume",
                      pointerClass='VolumeMask', condition="applyMask",
                      help='Select a volume to apply as a mask.')

        form.addParam('whiteningLabel', params.LabelParam, important=True,
                      label="It is strongly recommended to use the "
                            "pre-whitening wizard.")
        line = form.addLine('Pre-whitening')
        line.addParam('prewhitenAng', params.FloatParam, default=10,
                      label="Angstroms")
        line.addParam('prewhitenRamp', params.FloatParam, default=1,
                      label='Ramp')
        
        group = form.addGroup('Extra parameters')
        #form.addSection(label='Optional')
        group.addParam('stepRes', params.FloatParam, default=1,
                      label='Step size (Ang):',
                      help='in Angstroms (min 0.25, default 1.0)')
        line = group.addLine('Resolution Range (A)', 
                            help="Default (0): algorithm will start a just above\n"
                                 "             2*voxelSize until 4*voxelSize.   \n"
                                 "These fields are provided to accelerate computation "
                                 "if you are only interested in analyzing a specific "
                                 "resolution range. It is usually a good idea to provide "
                                 "a maximum resolution value to save time. Another way to "
                                 "save computation is to provide a larger step size.")
        line.addParam('minRes', params.FloatParam, default=0, label='Min')
        line.addParam('maxRes', params.FloatParam, default=0, label='Max')
        group.addParam('pVal', params.FloatParam, default=0.05,
                      label='Confidence level:',
                      help="P-value, usually between [0.01, 0.05].\n\n"
                           "This is the p-value of the statistical hypothesis test "
                           "on which ResMap is based on. It is customarily set to  "
                           "0.05 although you are welcome to reduce it (e.g. 0.01) "
                           "if you would like to obtain a more conservative result. "
                           "Empirically, ResMap results are not much affected by the p-value.")
                     
    #--------------------------- INSERT steps functions --------------------------------------------  
    
    def _insertAllSteps(self):
        # Insert processing steps
        if self.useSplitVolume:
            inputs = [self.volumeHalf1, self.volumeHalf2]
            self.inputVolume.set(None)
        else:
            inputs = [self.inputVolume]
            self.volumeHalf1.set(None)
            self.volumeHalf2.set(None)
            
        locations = [i.get().getLocation() for i in inputs]
            
        self._insertFunctionStep('convertInputStep', *locations)
        self._insertFunctionStep('estimateResolutionStep', 
                                 self.pVal.get(), 
                                 self.minRes.get(), 
                                 self.maxRes.get(), 
                                 self.stepRes.get(),
                                 self.prewhitenAng.get(),
                                 self.prewhitenRamp.get())

    #--------------------------- STEPS functions --------------------------------------------       
    
    def convertInputStep(self, volLocation1, volLocation2=None):
        """ Convert input volume to .mrc as expected by ResMap. 
        Params:
            volLocation1: a tuple containing index and filename of the input volume.
            volLocation2: if not None, a tuple like volLocation1 for the split volume.
        """
        ih = ImageHandler()
        ih.convert(volLocation1, self._getPath('volume1.map'))
        if volLocation2 is not None:
            ih.convert(volLocation2, self._getPath('volume2.map')) 

    def estimateResolutionStep(self, pValue, minRes, maxRes, stepRes, ang, rampWeight):
        """ Call ResMap.py with the appropriate parameters. """
        results = self.runResmap(self._getPath())

        self.histogramData.set(dumps(results['resHisto']))
        plotDict = {'minRes': results['minRes'],
                    'maxRes': results['maxRes'],
                    'orig_n': results['orig_n'],
                    'n': results['n'],
                    'currentRes': results['currentRes']
                    }
        self.plotData.set(dumps(plotDict))
        self._store(self.histogramData, self.plotData)

        self.savePlots(results)

    def savePlots(self, results=None):
        """ Store png images of the plots to be used as images, """
        # Add resmap libraries to the path
        sys.path.append(os.environ['RESMAP_HOME'])
        # This is needed right now because we are having
        # some memory problem with matplotlib plots right now in web
        Plotter.setBackend('Agg')
        self._plotVolumeSlices().savefig(self._getExtraPath('volume1.map.png'))
        plot = self._plotResMapSlices(results['resTOTALma'])
        plot.savefig(self._getExtraPath('volume1_resmap.map.png'))
        self._plotHistogram().savefig(self._getExtraPath('histogram.png'))

    #--------------------------- INFO functions --------------------------------------------
    
    def _summary(self):
        summary = []
        return summary
    
    def _validate(self):
        errors = []

        if self.useSplitVolume:
            half1 = self.volumeHalf1.get()
            half2 = self.volumeHalf2.get()
            if half1.getSamplingRate() != half2.getSamplingRate():
                errors.append('The selected half volumes have not the same pixel size.')
            if half1.getXDim() != half2.getXDim():
                errors.append('The selected half volumes have not the same dimensions.')
                
        return errors
    
    #--------------------------- UTILS functions --------------------------------------------
 
    def runResmap(self, workingDir, wizardMode=False):
        """ Prepare the args dictionary to be used
        and call the ResMap algorithm.
        Params:
            workingDir: where to run ResMap
            wizardMode: some custom params to be used by the wizard
                to display the pre-whitening GUI and only that.
        with the  """
        self._enterDir(workingDir)
        
        volumes = ['volume1.map', 'volume2.map']
        
        # Add resmap libraries to the path
        sys.path.append(os.environ['RESMAP_HOME'])
        from ResMap_algorithm import ResMap_algorithm
        from ResMap_fileIO import MRC_Data
        
        # Always read the first volume as mrc data
        data1 = MRC_Data(volumes[0],'ccp4')
        
        prewhitenArgs = {'display': wizardMode,
                         'force-stop': wizardMode                         
                         }
        if (self.prewhitenAng.hasValue() and 
            self.prewhitenRamp.hasValue()):
            prewhitenArgs['newElbowAngstrom'] = self.prewhitenAng.get()
            prewhitenArgs['newRampWeight'] = self.prewhitenRamp.get()
            
        args = {'pValue': self.pVal.get(),
                'minRes': self.minRes.get(), 
                'maxRes': self.maxRes.get(),
                'stepRes': self.stepRes.get(),
                'chimeraLaunch': False, # prevent ResMap to launch some graphical analysis
                'graphicalOutput': False, 
                'scipionPrewhitenParams': prewhitenArgs
                }
        
        if self.useSplitVolume:
            # Read the second splitted volume
            data2 = MRC_Data(volumes[1],'ccp4')
            args.update({'vxSize': self.volumeHalf1.get().getSamplingRate(),
                         'inputFileName1': 'volume1.map',
                         'inputFileName2': 'volume2.map',
                         'data1': data1,
                         'data2': data2,
                         })
        else:
            args.update({'vxSize': self.inputVolume.get().getSamplingRate(),
                         'inputFileName': 'volume1.map',
                         'data': data1,
                         })   
            
        results = ResMap_algorithm(**args)  
        self._leaveDir()

        return results
    
    #--------- Functions related to Plotting
    
    def _getVolumeMatrix(self, volName):
        from ResMap_fileIO import MRC_Data
        
        volPath = self._getPath(volName)
        return MRC_Data(volPath, 'ccp4').matrix
    
    def _plotVolumeSlices(self, **kwargs):
        from ResMap_visualization import plotOriginalVolume
        fig = plotOriginalVolume(self._getVolumeMatrix('volume1.map'), **kwargs)
        return Plotter(figure=fig)
        
    def _plotResMapSlices(self, data=None, **kwargs):
        from ResMap_visualization import plotResMapVolume
        plotDict = loads(self.plotData.get())
        if data is None:
            data = self._getVolumeMatrix('volume1_resmap.map')
            data  = np.ma.masked_where(data > plotDict['currentRes'], data, copy=True)
        kwargs.update(plotDict)
        fig = plotResMapVolume(data, **kwargs)
        return Plotter(figure=fig)
             
    def _plotHistogram(self):
        from ResMap_visualization import plotResolutionHistogram
        histogramData = loads(self.histogramData.get())
        fig = plotResolutionHistogram(histogramData)
        return Plotter(figure=fig)    
class EmpiarDepositor(EMProtocol):
    """
    Deposit image sets to empiar
    """
    _label = 'Empiar deposition'
    _ih = ImageHandler()
    _imageSetCategories = {
        "SetOfMicgrographs":
        "T1",
        "SetOfMovies":
        'T2',
        'T3':
        'micrographs - focal pairs - unprocessed',
        'T4':
        'micrographs - focal pairs - contrast inverted',
        'T5':
        'picked particles - single frame - unprocessed',
        'T6':
        'picked particles - multiframe - unprocessed',
        'T7':
        'picked particles - single frame - processed',
        'T8':
        'picked particles - multiframe - processed',
        'T9':
        'tilt series',
        'T10':
        'class averages',
        'OT':
        'other, in this case please specify the category in the second element.'
    }
    _imageSetFormats = {
        'mrc': 'T1',
        'mrcs': 'T2',
        'tiff': 'T3',
        'img': 'T4',  # imagic
        'dm3': 'T5',
        'dm4': 'T6',
        'spi': 'T7',  # spider
    }

    _experimentTypes = ['1', '2', '3', '4', '5', '6']
    _releaseDateTypes = ["IM", "EP", "HP", "H1"]
    _countryCodes = [
        'AD', 'AE', 'AF', 'AG', 'AI', 'AL', 'AM', 'AO', 'AQ', 'AR', 'AS', 'AT',
        'AU', 'AW', 'AZ', 'BA', 'BB', 'BD', 'BE', 'BF', 'BG', 'BH', 'BI', 'BJ',
        'BL', 'BM', 'BN', 'BO', 'BR', 'BS', 'BT', 'BV', 'BW', 'BY', 'BZ', 'CA',
        'CC', 'CD', 'CF', 'CG', 'CH', 'CI', 'CK', 'CL', 'CM', 'CN', 'CO', 'CR',
        'CU', 'CV', 'CW', 'CX', 'CY', 'CZ', 'DE', 'DJ', 'DK', 'DM', 'DO', 'DZ',
        'EC', 'EE', 'EG', 'EH', 'ER', 'ES', 'ET', 'FI', 'FJ', 'FK', 'FM', 'FO',
        'FR', 'FX', 'GA', 'GB', 'GD', 'GE', 'GF', 'GG', 'GH', 'GI', 'GL', 'GM',
        'GN', 'GP', 'GQ', 'GR', 'GS', 'GT', 'GU', 'GW', 'GY', 'HK', 'HM', 'HN',
        'HR', 'HT', 'HU', 'ID', 'IE', 'IL', 'IM', 'IN', 'IO', 'IQ', 'IR', 'IS',
        'IT', 'JE', 'JM', 'JO', 'JP', 'KE', 'KG', 'KH', 'KI', 'KM', 'KN', 'KP',
        'KR', 'KW', 'KY', 'KZ', 'LA', 'LB', 'LC', 'LI', 'LK', 'LR', 'LS', 'LT',
        'LU', 'LV', 'LY', 'MA', 'MC', 'MD', 'ME', 'MF', 'MG', 'MH', 'MK', 'ML',
        'MM', 'MN', 'MO', 'MP', 'MQ', 'MR', 'MS', 'MT', 'MU', 'MV', 'MW', 'MX',
        'MY', 'MZ', 'NA', 'NC', 'NE', 'NF', 'NG', 'NI', 'NL', 'NO', 'NP', 'NR',
        'NU', 'NZ', 'OM', 'PA', 'PE', 'PF', 'PG', 'PH', 'PK', 'PL', 'PM', 'PN',
        'PR', 'PS', 'PT', 'PW', 'PY', 'QA', 'RE', 'RO', 'RS', 'RU', 'RW', 'SA',
        'SB', 'SC', 'SD', 'SE', 'SG', 'SH', 'SI', 'SJ', 'SK', 'SL', 'SM', 'SN',
        'SO', 'SR', 'SS', 'ST', 'SV', 'SX', 'SY', 'SZ', 'TC', 'TD', 'TF', 'TG',
        'TH', 'TJ', 'TK', 'TL', 'TM', 'TN', 'TO', 'TR', 'TT', 'TV', 'TW', 'TZ',
        'UA', 'UG', 'UM', 'US', 'UY', 'UZ', 'VA', 'VC', 'VE', 'VG', 'VI', 'VN',
        'VU', 'WF', 'WS', 'XK', 'YE', 'YT', 'ZA', 'ZM', 'ZW'
    ]

    _voxelTypes = {
        _ih.DT_UCHAR: 'T1',  # 'UNSIGNED BYTE'
        _ih.DT_SCHAR: 'T2',  # 'SIGNED BYTE'
        _ih.DT_USHORT: 'T3',  # 'UNSIGNED 16 BIT INTEGER'
        _ih.DT_SHORT: 'T4',  # 'SIGNED 16 BIT INTEGER'
        _ih.DT_UINT: 'T5',  # 'UNSIGNED 32 BIT INTEGER'
        _ih.DT_INT: 'T6',  # 'SIGNED 32 BIT INTEGER'
        _ih.DT_FLOAT: 'T7'  # '32 BIT FLOAT'
    }

    DEPOSITION_SCHEMA = 'empiar_deposition.schema.json'
    DEPOSITION_TEMPLATE = 'empiar_deposition_template.json'
    OUTPUT_DEPO_JSON = 'deposition.json'
    OUTPUT_WORKFLOW = 'workflow.json'

    IMGSET_KEY = 'imagesets'
    IMGSET_NAME = "name"
    IMGSET_DIR = "directory"
    IMGSET_CAT = "category"
    IMGSET_HEADER_FORMAT = "header_format"
    IMGSET_DATA_FORMAT = "data_format"
    IMGSET_SIZE = "num_images_or_tilt_series"
    IMGSET_FRAMES = "frames_per_image"
    IMGSET_FRAME_MIN = "frame_range_min"
    IMGSET_FRAME_MAX = "frame_range_max"
    IMGSET_VOXEL_TYPE = "voxel_type"
    IMGSET_PIXEL_WIDTH = "pixel_width"
    IMGSET_PIXEL_HEIGHT = "pixel_height"
    IMGSET_DETAILS = "details"
    IMGSET_WIDTH = "image_width"
    IMGSET_HEIGHT = "image_height"

    _imageSetTemplate = {
        IMGSET_NAME: "",
        IMGSET_DIR: "/data/%s",
        IMGSET_CAT: "('%s', '%s')",
        IMGSET_HEADER_FORMAT: "('%s', '%s')",
        IMGSET_DATA_FORMAT: "('%s', '%s')",
        IMGSET_SIZE: 0,
        IMGSET_FRAMES: 0,
        IMGSET_FRAME_MIN: None,
        IMGSET_FRAME_MAX: None,
        IMGSET_VOXEL_TYPE: "('%s', '%s')",
        IMGSET_PIXEL_WIDTH: None,
        IMGSET_PIXEL_HEIGHT: None,
        IMGSET_DETAILS: "",
        IMGSET_WIDTH: 0,
        IMGSET_HEIGHT: 0
    }

    def __init__(self, **kwargs):
        EMProtocol.__init__(self, **kwargs)
        self.workflowDicts = []
        self.entryAuthorStr = ""
        self.workflowPath = String()
        self.depositionJsonPath = String()

    #--------------- DEFINE param functions ---------------

    def _defineParams(self, form):
        form.addSection(label='Entry')
        # form.addParam('workflowJson', params.PathParam,
        #               label='Workflow json', allowsNull=True,
        #               help='Path to the workflow json (obtained using the export option (right click on'
        #                     'one of your selected protocols). Will generate json of all protocols if not provided.')
        form.addParam(
            "submit",
            params.BooleanParam,
            label="Submit deposition",
            default=True,
            help="Set to false to avoid submitting the deposition to empiar "
            "(it will just be created locally).")
        form.addParam("resume",
                      params.BooleanParam,
                      label="Resume upload",
                      default=False,
                      condition='submit',
                      help="Is this a continuation of a previous upload?")
        form.addParam(
            'entryID',
            params.StringParam,
            label="Entry ID",
            condition="resume",
            important=True,
            help="EMPIAR entry ID - use if you wanna resume an upload")
        form.addParam('uniqueDir',
                      params.StringParam,
                      important=True,
                      label="Unique directory",
                      condition="resume",
                      help="EMPIAR directory assigned to this deposition ID")
        form.addParam(
            'depositionJson',
            params.PathParam,
            important=True,
            label="Deposition json",
            condition="resume",
            help=
            "Path to the json file of the deposition we're about to resume.")

        form.addParam(
            'jsonTemplate',
            params.PathParam,
            condition='not resume',
            label="Custom json (Optional)",
            allowsNull=True,
            help=
            "Path to a customized template of the EMPIAR submission json, if you don't want to use the "
            "default one.")
        form.addParam(
            'entryTopLevel',
            params.StringParam,
            label="Top level folder",
            validators=[params.NonEmpty],
            important=True,
            help=
            "How you want to name the top level folder of the empiar entry. \n This should be a "
            "simple and descriptive name without special characters (:,?, spaces, etc). \n"
            "If you're resuming an upload, this should be the same name you used to create the folder."
        )
        form.addParam(
            'entryTitle',
            params.StringParam,
            label="Entry title",
            important=True,
            condition="not resume",
            help=
            "EMPIAR entry title. This should not be empty if not using a custom template."
        )
        form.addParam(
            'entryAuthor',
            params.StringParam,
            label="Entry author",
            important=True,
            condition="not resume",
            help=
            'EMPIAR entry author in the form "LastName, Initials" e.g. Smith, JW\n'
            'This should not be empty if not using a custom template.')
        form.addParam(
            'experimentType',
            params.EnumParam,
            label="Experiment type",
            condition="not resume",
            choices=self._experimentTypes,
            default=2,
            important=True,
            help="EMPIAR experiment type:\n"
            "1 - image data collected using soft x-ray tomography\n"
            "2 - simulated data, for instance, created using InSilicoTEM\n"
            "   (note: simulated data accepted in special circumstances such\n"
            "    as test/training sets for validation challenges: you need to\n"
            "    ask for and be granted permission PRIOR to deposition otherwise\n"
            "    the dataset will be rejected by EMPIAR)\n"
            "3 - raw image data relating to structures deposited to the Electron Microscopy Data Bank\n"
            "4 - image data collected using serial block-face scanning electron microscopy \n"
            "    (like the Gatan 3View system)\n"
            "5 - image data collected using focused ion beam scanning electron microscopy\n"
            "6 - integrative hybrid modelling data.")
        form.addParam(
            'releaseDate',
            params.EnumParam,
            label="Release date",
            condition="not resume",
            choices=self._releaseDateTypes,
            default=2,
            important=True,
            help="EMPIAR release date:\n"
            "Options for releasing entry to the public: \n"
            "IM - directly after the submission has been processed\n"
            "EP - after the related EMDB entry has been released\n"
            "HP - after the related primary citation has been published\n"
            "H1 - delay release of entry by one year from the date of deposition"
        )

        form.addSection(label='Image sets')
        self.inputSetsParam = form.addParam(
            'inputSets',
            params.MultiPointerParam,
            label="Input set",
            important=True,
            condition="not resume",
            pointerClass='EMSet,Volume',
            minNumObjects=1,
            help='Select one set (of micrographs, particles,'
            ' volumes, etc.) to be deposited to EMPIAR.')
        # form.addParam('micSet', params.PointerParam, pointerClass='SetOfMicrographs,SetOfMovies,SetOfParticles',
        #               label='Image set', important=False,
        #               help='Image set to be uploaded to EMPIAR\n')

        form.addSection(label="Principal investigator")
        form.addParam(
            'piFirstName',
            params.StringParam,
            label='First name',
            condition="not resume",
            help=
            "PI first name e.g. Juan- this should not be empty if not using a custom template."
        )
        form.addParam(
            'piLastName',
            params.StringParam,
            label='Last name',
            condition="not resume",
            help=
            'PI Last name e.g. Perez - this should not be empty if not using a custom template.'
        )
        form.addParam(
            'piOrg',
            params.StringParam,
            label='organization',
            condition="not resume",
            help=
            "The name of the organization e.g. Biocomputing Unit, CNB-CSIC \n"
            "This should not be empty if not using a custom template.")
        form.addParam(
            'piEmail',
            params.StringParam,
            label="Email",
            condition="not resume",
            help='PI Email address e.g. [email protected] - '
            'this should not be empty if not using a custom template.')
        form.addParam(
            'piCountry',
            params.StringParam,
            label="Country",
            condition="not resume",
            help=
            "Two letter country code eg. ES. This should not be empty if not using a custom template."
            "\nValid country codes are %s" % " ".join(self._countryCodes))

        form.addSection(label="Corresponding Author")
        form.addParam(
            'caFirstName',
            params.StringParam,
            label='First name',
            condition="not resume",
            help="Corresponding author's first name e.g. Juan. "
            "This should not be empty if not using a custom template. ")
        form.addParam(
            'caLastName',
            params.StringParam,
            label='Last name',
            condition="not resume",
            help="Corresponding author's Last name e.g. Perez. "
            "This should not be empty if not using a custom template.")
        form.addParam(
            'caOrg',
            params.StringParam,
            label='organization',
            condition="not resume",
            help="The name of the organization e.g. Biocomputing Unit, CNB-CSIC."
            "This should not be empty if not using a custom template.")
        form.addParam(
            'caEmail',
            params.StringParam,
            label="Email",
            condition="not resume",
            help="Corresponding author's Email address e.g. [email protected]. "
            "This should not be empty if not using a custom template.")
        form.addParam(
            'caCountry',
            params.StringParam,
            label="Country",
            condition="not resume",
            help=
            "Two letter country code e.g. ES. This should not be empty if not using a custom template."
            "\nValid country codes are %s" % " ".join(self._countryCodes))

    # --------------- INSERT steps functions ----------------

    def _insertAllSteps(self):
        self._insertFunctionStep('createDepositionStep')
        if self.submit:
            self._insertFunctionStep('submitDepositionStep')

    # --------------- STEPS functions -----------------------

    def createDepositionStep(self):
        # make folder in extra
        if not self.resume:
            pwutils.makePath(self._getExtraPath(self.entryTopLevel.get()))

            # export workflow json
            self.exportWorkflow()

            # create deposition json
            jsonTemplatePath = self.jsonTemplate.get(
                '').strip() or self.getJsonTemplatePath()

            entryAuthorStr = self.entryAuthor.get().split(',')
            self.entryAuthorStr = "'%s', '%s'" % (entryAuthorStr[0].strip(),
                                                  entryAuthorStr[1].strip())
            self.releaseDate = self._releaseDateTypes[self.releaseDate.get()]
            self.experimentType = self.experimentType.get() + 1
            jsonStr = open(jsonTemplatePath, 'rb').read().decode('utf-8')
            jsonStr = jsonStr % self.__dict__
            depoDict = json.loads(jsonStr)
            imageSets = self.processImageSets()
            depoDict[self.IMGSET_KEY] = imageSets
            depoJson = self.getTopLevelPath(self.OUTPUT_DEPO_JSON)
            with open(depoJson, 'w') as f:
                # f.write(jsonStr.encode('utf-8'))
                json.dump(depoDict, f, indent=4)
            # self.depositionJsonPath = depoJson
            self.depositionJsonPath.set(depoJson)
        else:
            self.depositionJsonPath.set(self.depositionJson.get())
            with open(self.depositionJson.get()) as f:
                depoDict = json.load(f)
        self._store()
        self.validateDepoJson(depoDict)

    def submitDepositionStep(self):
        depositorCall = '%(resume)s %(token)s %(depoJson)s %(ascp)s %(dataDir)s'
        args = {
            'resume':
            '-r %s %s' % (self.entryID, self.uniqueDir) if self.resume else "",
            'token':
            os.environ[EMPIAR_TOKEN],
            'depoJson':
            os.path.abspath(self.depositionJsonPath.get()),
            'ascp':
            os.environ[ASCP_PATH],
            'dataDir':
            os.path.abspath(self.getTopLevelPath())
        }

        depositorCall = depositorCall % args
        print("Empiar depositor call: %s" % depositorCall)
        empiar_depositor.main(depositorCall.split())

    # --------------- INFO functions -------------------------

    def _validate(self):
        errors = []
        if self.submit:
            if EMPIAR_TOKEN not in os.environ:
                errors.append(
                    "Environment variable %s not set. Please set your %s in ~/.config/scipion/scipion.conf "
                    "or in your environment." % (EMPIAR_TOKEN, EMPIAR_TOKEN))
            if ASPERA_PASS not in os.environ:
                errors.append(
                    "Environment variable %s not set. Please set your %s in ~/.config/scipion/scipion.conf "
                    "or in your environment." % (ASPERA_PASS, ASPERA_PASS))
        return errors

    def _citations(self):
        return ['Iudin2016']

    def _summary(self):
        summary = []
        if self.depositionJsonPath.get():
            summary.append('Generated deposition files:')
            summary.append('- [[%s][Scipion workflow]]' % self.workflowPath)
            summary.append('- [[%s][Deposition json]]' %
                           self.depositionJsonPath)
        else:
            summary.append('No deposition files generated yet')

        return summary

    def _methods(self):
        return []

    # -------------------- UTILS functions -------------------------

    def getTopLevelPath(self, *paths):
        return os.path.join(self._getExtraPath(self.entryTopLevel.get()),
                            *paths)

    def getJsonTemplatePath(self):
        return os.path.join(os.path.dirname(os.path.abspath(__file__)),
                            self.DEPOSITION_TEMPLATE)

    def exportWorkflow(self):
        project = self.getProject()
        workflowProts = [p for p in project.getRuns()
                         ]  # workflow prots are all prots if no json provided
        workflowJsonPath = os.path.join(
            project.path, self.getTopLevelPath(self.OUTPUT_WORKFLOW))
        protDicts = project.getProtocolDicts(workflowProts)

        for inputSetPointer in self.inputSets:
            inputSet = inputSetPointer.get()
            setName = inputSet.getObjName()
            setParentId = inputSet.getObjParentId()
            setParentObj = project.getObject(setParentId)
            protDicts[setParentId]['filesPath'] = os.path.join('.', setName)
            pwutils.createLink(setParentObj._getExtraPath(),
                               self.getTopLevelPath(setName))

        with open(workflowJsonPath, 'w') as f:
            f.write(
                json.dumps(list(protDicts.values()),
                           indent=4,
                           separators=(',', ': ')))

        self.workflowPath.set(workflowJsonPath)

        return workflowJsonPath

    def validateDepoJson(self, depoDict):
        with open(
                os.path.join(os.path.dirname(__file__),
                             self.DEPOSITION_SCHEMA)) as f:
            schema = json.load(f)
        valid = jsonschema.validate(depoDict,
                                    schema)  # raises exception if not valid
        return True

    # --------------- imageSet utils -------------------------

    def getEmpiarCategory(self, imageSet):
        """TODO"""
        className = imageSet.getClassName()
        category = self._imageSetCategories.get(className, 'OT')
        if category == 'OT':
            return 'OT', 'TODO'
        else:
            return category, ''

    def getEmpiarFormat(self, imagePath):
        ext = pwutils.getExt(imagePath).lower().strip('.')
        imgFormat = self._imageSetFormats.get(ext, 'OT')
        if imgFormat == 'OT':
            return 'OT', ext
        else:
            return imgFormat, ''

    def getVoxelType(self, imageObj):
        """TODO"""
        dataType = self._ih.getDataType(imageObj)
        empiarType = self._voxelTypes.get(dataType, 'OT')
        if empiarType == 'OT':
            return 'OT', 'TODO'
        else:
            return empiarType, ''

    def getImageSetDict(self, imageSet):
        firstImg = imageSet.getFirstItem()
        firstFileName = firstImg.getFileName()
        dims = imageSet.getDimensions()
        micSetDict = copy.deepcopy(self._imageSetTemplate)
        micSetDict[self.IMGSET_NAME] = imageSet.getObjName()
        micSetDict[self.IMGSET_DIR] = "/data/%s" % imageSet.getObjName()
        micSetDict[self.IMGSET_CAT] = "('%s', '%s')" % self.getEmpiarCategory(
            imageSet)
        micSetDict[
            self.IMGSET_HEADER_FORMAT] = "('%s', '%s')" % self.getEmpiarFormat(
                firstFileName)
        micSetDict[
            self.IMGSET_DATA_FORMAT] = "('%s', '%s')" % self.getEmpiarFormat(
                firstFileName)
        micSetDict[self.IMGSET_SIZE] = len(imageSet)
        micSetDict[self.IMGSET_FRAMES] = dims[2]
        micSetDict[
            self.
            IMGSET_VOXEL_TYPE] = "('%s', '%s')" % self.getVoxelType(firstImg)
        micSetDict[self.IMGSET_PIXEL_WIDTH] = imageSet.getSamplingRate()
        micSetDict[self.IMGSET_PIXEL_HEIGHT] = imageSet.getSamplingRate()
        micSetDict[self.IMGSET_DETAILS] = "/data/%s" % os.path.basename(
            self.workflowPath.get())
        micSetDict[self.IMGSET_WIDTH] = dims[0]
        micSetDict[self.IMGSET_HEIGHT] = dims[1]
        return micSetDict

    def processImageSets(self):
        inputSets = [s.get() for s in self.inputSets]
        imgSetDicts = []
        for imgSet in inputSets:
            imgSetDict = self.getImageSetDict(imgSet)
            imgSetDicts.append(imgSetDict)
        return imgSetDicts
Ejemplo n.º 4
0
class PKDepositionParameters(EMObject):
    def __init__(self, **args):
        EMObject.__init__(self, **args)
        self.fnSubstance = String()
        self.fnLung = String()
        self.fnDeposition = String()
        self.doseMultiplier = 1

    def setFiles(self, fnSubstance, fnLung, fnDeposition):
        self.fnSubstance.set(fnSubstance)
        self.fnLung.set(fnLung)
        self.fnDeposition.set(fnDeposition)

    def readDepositionFile(self, alvlim):
        fh=open(self.fnDeposition.get())
        state = 0

        for line in fh.readlines():
            if line.strip()=="":
                continue

            if state == 0: # Header
                tokens = line.split(':')
                if tokens[0]=='Total dose [ug]':
                    self.dose = float(tokens[1].strip())*self.doseMultiplier
                elif tokens[0]=='Diameter [um]':
                    self.diameterMode = tokens[1].strip()
                elif 'FractionDeposited' in tokens[0]:
                    diameters = []
                    oldGeneration = 0
                    fractionMatrix = []
                    fractionRow = []
                    state = 1
            elif state == 1: # table of numbers
                tokens = [float(x.strip()) for x in line.split()]
                diam = tokens[0]
                generation = tokens[1]
                fractionDeposited = tokens[2]
                if not diam in diameters:
                    diameters.append(diam)
                if oldGeneration!=generation:
                    if oldGeneration!=0:
                        fractionMatrix.append(fractionRow)
                    fractionRow=[]
                    oldGeneration=generation
                fractionRow.append(fractionDeposited)
        fractionMatrix.append(fractionRow)
        fh.close()

        diameters = np.asarray(diameters) # [um] for D
        if self.diameterMode=="aerodynamic":
            # Hartung2020_MATLAB/functions/aero2geom.m
            lambdaVar = 1; # spherical shape
            rho_water = 1; # [g / mL]
            rho_subst = self.substance.rho * self.substance.MW * 1e-9; # [nmol / mL] *[g / mol] ->[g / mL]
            diameters = diameters * np.sqrt( lambdaVar * rho_water / rho_subst);

        self.dose_nmol = self.dose * 1e3 / self.substance.MW # % [ug] *1e3 / ([g/mol]) = [nmol]
        self.bronchiDose_nmol = np.asarray(fractionMatrix[0:(alvlim-1)])*self.dose_nmol
           # This is a matrix with as many rows as generations and as many columns as diameters
           # The content is what is the dose deposited at that generation in nmol
        alveolarMatrix = np.reshape(fractionMatrix[alvlim-1:],(len(fractionMatrix)-alvlim+1,diameters.size))
        self.alveolarDose_nmol = np.sum(alveolarMatrix*self.dose_nmol, axis=0)
           # This is a matrix with as many rows as generations in the alveoli and as many columns as diameters
           # The content is what is the dose deposited at that generation in nmol

        self.throatDose = self.dose_nmol - np.sum(self.bronchiDose_nmol) - np.sum(self.alveolarDose_nmol)
        self.particleSize = diam2vol(diameters) # cm3

    def read(self):
        self.substance = PKSubstanceLungParameters()
        self.substance.read(self.fnSubstance.get())

        self.lung = PKPhysiologyLungParameters()
        self.lung.read(self.fnLung.get())

        alveolarGeneration = len(self.lung.getBronchial()['type'])+1
        self.readDepositionFile(alveolarGeneration)

    def getData(self):
        data = {}
        data['bronchial'] = self.bronchiDose_nmol
        data['alveolar'] = self.alveolarDose_nmol
        data['throat'] = self.throatDose
        data['size'] = self.particleSize
        data['dose_nmol'] = self.dose_nmol
        return data
Ejemplo n.º 5
0
class PKPhysiologyLungParameters(EMObject):
    def __init__(self, **args):
        EMObject.__init__(self, **args)
        self.fnPhys = String()
        self.multiplier = [1] * 9

    def write(self, fnOut):
        fh=open(fnOut,"w")
        fh.write("%f # cardiac output [mL/min]\n"%self.Qco)
        fh.write("%f # lung tissue weight, without blood [g]\n"%self.OWlun)
        fh.write("%f # alveolar fraction of cardiac output\n"%self.falvCO)
        fh.write("%f # alveolar ELF volume [mL]\n"%self.Velf_alv)
            # ELF = Epithelial Lining Fluid
        fh.write("%f # alveolar surface area [cm2]\n"%self.Surf_alv)
        fh.write("%f # bronchial fraction of cardiac output\n"%self.fbrCO)
        fh.write("%f # bronchial fraction of lung tissue volume\n"%self.fbrVlun)
        fh.write("%f # bronchial ELF heights for interpolation, trachea [cm]\n" % self.helf_trach)
        fh.write("%f # bronchial ELF heights for interpolation, terminal bronchioles [cm]\n" % self.helf_termbr)
        fh.write("%s # trachea length [cm]\n" % self.tracheaLength)
        fh.write("%s # trachea diameter [cm]\n" % self.tracheaDiameter)
        fh.write("%s # main bronchi length [cm]\n" % self.bronchi1Length)
        fh.write("%s # main bronchi diameter [cm]\n" % self.bronchi1Diameter)
        fh.write("%s # bronchi length [cm]\n" % self.bronchi2Length)
        fh.write("%s # bronchi diameter [cm]\n" % self.bronchi2Diameter)
        fh.write("%s # bronchiole length [cm]\n" % self.bronchi3Length)
        fh.write("%s # bronchiole diameter [cm]\n" % self.bronchi3Diameter)
        fh.write("%s # terminal bronchiole length [cm]\n" % self.bronchi4Length)
        fh.write("%s # terminal bronchiole diameter [cm]\n" % self.bronchi4Diameter)

        fh.close()
        self.fnPhys.set(fnOut)

    def read(self, fnIn):
        fh=open(fnIn)
        self.Qco=float(fh.readline().split()[0])
        self.OWlun=float(fh.readline().split()[0])
        self.falvCO=float(fh.readline().split()[0])
        self.Velf_alv=float(fh.readline().split()[0])
        self.Surf_alv=float(fh.readline().split()[0])
        self.fbrCO=float(fh.readline().split()[0])
        self.fbrVlun=float(fh.readline().split()[0])
        self.helf_trach=float(fh.readline().split()[0])
        self.helf_termbr=float(fh.readline().split()[0])
        self.tracheaLength=fh.readline().split()[0]
        self.tracheaDiameter=fh.readline().split()[0]
        self.bronchi1Length=fh.readline().split()[0]
        self.bronchi1Diameter=fh.readline().split()[0]
        self.bronchi2Length=fh.readline().split()[0]
        self.bronchi2Diameter=fh.readline().split()[0]
        self.bronchi3Length=fh.readline().split()[0]
        self.bronchi3Diameter=fh.readline().split()[0]
        self.bronchi4Length=fh.readline().split()[0]
        self.bronchi4Diameter=fh.readline().split()[0]
        fh.close()
        self.fnPhys.set(fnIn)

    def getSystemic(self):
        # Hartung2020_MATLAB/physiol_subst/physiology_systemic.m
        data = {}
        data['Qco']=self.Qco
        data['OWlung']=self.OWlun
        return data

    def getBronchial(self):
        # Hartung2020_MATLAB/physiol_subst/physiology_bronchial.m
        def listSplit(valuesStr):
            return [float(x) for x in valuesStr.split(',')]

        tracheaLength    = float(self.tracheaLength)
        tracheaDiameter  = float(self.tracheaDiameter)
        bronchi1Length   = float(self.bronchi1Length)
        bronchi1Diameter = float(self.bronchi1Diameter)
        bronchi2Length   = listSplit(self.bronchi2Length)
        bronchi2Diameter = listSplit(self.bronchi2Diameter)
        bronchi3Length   = listSplit(self.bronchi3Length)
        bronchi3Diameter = listSplit(self.bronchi3Diameter)
        bronchi4Length   = float(self.bronchi4Length)
        bronchi4Diameter = float(self.bronchi4Diameter)

        segmentLengths   = [tracheaLength,   bronchi1Length]  +bronchi2Length  +bronchi3Length  +[bronchi4Length]
        segmentDiameters = [tracheaDiameter, bronchi1Diameter]+bronchi2Diameter+bronchi3Diameter+[bronchi4Diameter]
        segmentType      = ['T','B1'] + ['B2']*len(bronchi2Length) + ['B3']*len(bronchi3Length) + ['B4']

        length_cm = np.asarray(segmentLengths)
        diam_cm = np.asarray(segmentDiameters)
        generation = np.arange(0,len(segmentLengths))+1
        number = np.power(2.0,generation-1)

        xArea_cm2 = math.pi*np.multiply(np.power(diam_cm/2,2.0),number) # cm2
        vol_cm3 = np.multiply(xArea_cm2,length_cm) # cm3
        start_cm = np.insert(np.cumsum(segmentLengths[:-1]),0,0,axis=0)
        end_cm =  np.cumsum(segmentLengths)
        pos =  0.5*(start_cm+end_cm)
        surf_cm2 = np.multiply(np.multiply(length_cm,(math.pi * diam_cm)),number)
        h_elf_cm = np.interp(pos, [0, np.sum(length_cm)], [self.helf_trach, self.helf_termbr])
        elf_cm3 = math.pi/4 * (np.power(diam_cm,2)-np.power((diam_cm-2*h_elf_cm),2))
        elf_cm3 = np.multiply(np.multiply(elf_cm3,length_cm),number)

        Vtis_ctr = self.OWlun*self.fbrVlun; # central lung tissue volume
        voltis_cm3 = elf_cm3 * Vtis_ctr / sum(elf_cm3);

        data = {}
        data['generation']=generation
        data['type']=segmentType
        data['number']=number
        data['length_cm']=length_cm
        data['diam_cm']=diam_cm
        data['xArea_cm2']=xArea_cm2
        data['vol_cm3']=vol_cm3
        data['start_cm']=start_cm
        data['end_cm']=end_cm
        data['pos']=pos
        data['surf_cm2']=surf_cm2 * self.multiplier[5]

        data['h_elf_trach'] = self.helf_trach
        data['h_elf_termbr'] = self.helf_termbr
        data['h_elf_cm'] = h_elf_cm
        data['elf_cm3'] = elf_cm3 * self.multiplier[1]
        data['voltis_cm3'] = voltis_cm3 * self.multiplier[3]

        data['fVol'] = self.fbrVlun
        data['fQco'] = self.fbrCO * self.multiplier[7]

        return data

    def getAlveolar(self):
        # Hartung2020_MATLAB/physiol_subst/physiology_alveolar.m
        data = {}
        data['fQco']=self.falvCO * self.multiplier[8]
        data['fVol']=1-self.fbrVlun
        data['ELF_cm3'] = self.Velf_alv * self.multiplier[2]
        data['Vol_cm3'] = self.OWlun * data['fVol']  * self.multiplier[4] # density = 1 [g/cm^3]
        data['Surf_cm2'] = self.Surf_alv * self.multiplier[6]
        return data
Ejemplo n.º 6
0
class ProtResMap(ProtAnalysis3D):
    """
    ResMap is software tool for computing the local resolution of 3D
    density maps studied in structural biology, primarily by cryo-electron
    microscopy (cryo-EM).
     
    Please find the manual at http://resmap.sourceforge.net 
    """
    _label = 'local resolution'

    INPUT_HELP = """ Input volume(s) for ResMap.
    Required volume properties:
        1. The particle must be centered in the volume.
        2. The background must not been masked out.
    Desired volume properties:
        1. The volume has not been filtered in any way (low-pass filtering, etc.)
        2. The volume has a realistic noise spectrum.
           This is sometimes obtained by so-called amplitude correction.
           While a similar effect is often obtained by B-factor sharpening,
           please make sure that the spectrum does not blow up near Nyquist.
    """

    @classmethod
    def validateInstallation(cls):
        """ This function will be used to check if package is properly installed."""
        missingPaths = ["%s: %s" % (var, os.environ[var])
                        for var in [RESMAP_HOME]
                        if not os.path.exists(os.environ[var])]

        if missingPaths:
            return ["Missing variables:"] + missingPaths
        else:
            return []  # No errors

    def __init__(self, **kwargs):
        ProtAnalysis3D.__init__(self, **kwargs)
        self.histogramData = String()
        self.plotData = String() # store some values for later plot
             
    #--------------------------- DEFINE param functions --------------------------------------------   
    
    def _defineParams(self, form):
        form.addSection(label='Input')
        form.addParam('useSplitVolume', params.BooleanParam, default=False,
                      label="Use half volumes?",
                      help='Use split volumes for gold-standard FSC.')
        form.addParam('inputVolume', params.PointerParam,
                      pointerClass='Volume', condition="not useSplitVolume",
                      label="Input volume", important=True,
                      help=self.INPUT_HELP)
        form.addParam('volumeHalf1', params.PointerParam,
                      label="Volume half 1", important=True,
                      pointerClass='Volume', condition="useSplitVolume",
                      help=self.INPUT_HELP)
        form.addParam('volumeHalf2', params.PointerParam,
                      pointerClass='Volume', condition="useSplitVolume",
                      label="Volume half 2", important=True,
                      help=self.INPUT_HELP)

        form.addParam('applyMask', params.BooleanParam, default=False,
                      label="Mask input volume?",
                      help="It is not necessary to provide ResMap with a mask "
                           "volume. The algorithm will attempt to estimate a "
                           "mask volume by low-pass filtering the input volume "
                           "and thresholding it using a heuristic procedure.\n"
                           "If the automated procedure does not work well for "
                           "your particle, you may provide a mask volume that "
                           "matches the input volume in size and format. "
                           "The mask volume should be a binary volume with zero "
                           "(0) denoting the background/solvent and some positive"
                           "value (0+) enveloping the particle.")
        form.addParam('maskVolume', params.PointerParam, label="Mask volume",
                      pointerClass='VolumeMask', condition="applyMask",
                      help='Select a volume to apply as a mask.')

        form.addParam('whiteningLabel', params.LabelParam, important=True,
                      label="It is strongly recommended to use the "
                            "pre-whitening wizard.")
        line = form.addLine('Pre-whitening')
        line.addParam('prewhitenAng', params.FloatParam, default=10,
                      label="Angstroms")
        line.addParam('prewhitenRamp', params.FloatParam, default=1,
                      label='Ramp')
        
        group = form.addGroup('Extra parameters')
        #form.addSection(label='Optional')
        group.addParam('stepRes', params.FloatParam, default=1,
                      label='Step size (Ang):',
                      help='in Angstroms (min 0.25, default 1.0)')
        line = group.addLine('Resolution Range (A)', 
                            help="Default (0): algorithm will start a just above\n"
                                 "             2*voxelSize until 4*voxelSize.   \n"
                                 "These fields are provided to accelerate computation "
                                 "if you are only interested in analyzing a specific "
                                 "resolution range. It is usually a good idea to provide "
                                 "a maximum resolution value to save time. Another way to "
                                 "save computation is to provide a larger step size.")
        line.addParam('minRes', params.FloatParam, default=0, label='Min')
        line.addParam('maxRes', params.FloatParam, default=0, label='Max')
        group.addParam('pVal', params.FloatParam, default=0.05,
                      label='Confidence level:',
                      help="P-value, usually between [0.01, 0.05].\n\n"
                           "This is the p-value of the statistical hypothesis test "
                           "on which ResMap is based on. It is customarily set to  "
                           "0.05 although you are welcome to reduce it (e.g. 0.01) "
                           "if you would like to obtain a more conservative result. "
                           "Empirically, ResMap results are not much affected by the p-value.")
                     
    #--------------------------- INSERT steps functions --------------------------------------------  
    
    def _insertAllSteps(self):
        # Insert processing steps
        if self.useSplitVolume:
            inputs = [self.volumeHalf1, self.volumeHalf2]
            self.inputVolume.set(None)
        else:
            inputs = [self.inputVolume]
            self.volumeHalf1.set(None)
            self.volumeHalf2.set(None)
            
        locations = [i.get().getLocation() for i in inputs]
            
        self._insertFunctionStep('convertInputStep', *locations)
        self._insertFunctionStep('estimateResolutionStep', 
                                 self.pVal.get(), 
                                 self.minRes.get(), 
                                 self.maxRes.get(), 
                                 self.stepRes.get(),
                                 self.prewhitenAng.get(),
                                 self.prewhitenRamp.get())

    #--------------------------- STEPS functions --------------------------------------------       
    
    def convertInputStep(self, volLocation1, volLocation2=None):
        """ Convert input volume to .mrc as expected by ResMap. 
        Params:
            volLocation1: a tuple containing index and filename of the input volume.
            volLocation2: if not None, a tuple like volLocation1 for the split volume.
        """
        ih = ImageHandler()
        ih.convert(volLocation1, self._getPath('volume1.map'))
        if volLocation2 is not None:
            ih.convert(volLocation2, self._getPath('volume2.map')) 

    def estimateResolutionStep(self, pValue, minRes, maxRes, stepRes, ang, rampWeight):
        """ Call ResMap.py with the appropriate parameters. """
        results = self.runResmap(self._getPath())

        self.histogramData.set(dumps(results['resHisto']))
        plotDict = {'minRes': results['minRes'],
                    'maxRes': results['maxRes'],
                    'orig_n': results['orig_n'],
                    'n': results['n'],
                    'currentRes': results['currentRes']
                    }
        self.plotData.set(dumps(plotDict))
        self._store(self.histogramData, self.plotData)

        self.savePlots(results)

    def savePlots(self, results=None):
        """ Store png images of the plots to be used as images, """
        # Add resmap libraries to the path
        sys.path.append(os.environ['RESMAP_HOME'])
        # This is needed right now because we are having
        # some memory problem with matplotlib plots right now in web
        Plotter.setBackend('Agg')
        self._plotVolumeSlices().savefig(self._getExtraPath('volume1.map.png'))
        plot = self._plotResMapSlices(results['resTOTALma'])
        plot.savefig(self._getExtraPath('volume1_resmap.map.png'))
        self._plotHistogram().savefig(self._getExtraPath('histogram.png'))

    #--------------------------- INFO functions --------------------------------------------
    
    def _summary(self):
        summary = []

        if exists(self._getExtraPath('histogram.png')):
            results = self._parseOutput()
            summary.append('Mean resolution: %0.2f A' % results[0])
            summary.append('Median resolution: %0.2f A' % results[1])
        else:
            summary.append("Output is not ready yet.")

        return summary
    
    def _validate(self):
        errors = []

        if self.useSplitVolume:
            half1 = self.volumeHalf1.get()
            half2 = self.volumeHalf2.get()
            if half1.getSamplingRate() != half2.getSamplingRate():
                errors.append('The selected half volumes have not the same pixel size.')
            if half1.getXDim() != half2.getXDim():
                errors.append('The selected half volumes have not the same dimensions.')
                
        return errors
    
    #--------------------------- UTILS functions --------------------------------------------
 
    def runResmap(self, workingDir, wizardMode=False):
        """ Prepare the args dictionary to be used
        and call the ResMap algorithm.
        Params:
            workingDir: where to run ResMap
            wizardMode: some custom params to be used by the wizard
                to display the pre-whitening GUI and only that.
        with the  """
        self._enterDir(workingDir)
        
        volumes = ['volume1.map', 'volume2.map']
        
        # Add resmap libraries to the path
        sys.path.append(os.environ[RESMAP_HOME])
        from ResMap_algorithm import ResMap_algorithm
        from ResMap_fileIO import MRC_Data
        
        # Always read the first volume as mrc data
        data1 = MRC_Data(volumes[0],'ccp4')
        
        prewhitenArgs = {'display': wizardMode,
                         'force-stop': wizardMode                         
                         }
        if (self.prewhitenAng.hasValue() and 
            self.prewhitenRamp.hasValue()):
            prewhitenArgs['newElbowAngstrom'] = self.prewhitenAng.get()
            prewhitenArgs['newRampWeight'] = self.prewhitenRamp.get()
            
        args = {'pValue': self.pVal.get(),
                'minRes': self.minRes.get(), 
                'maxRes': self.maxRes.get(),
                'stepRes': self.stepRes.get(),
                'chimeraLaunch': False, # prevent ResMap to launch some graphical analysis
                'graphicalOutput': False, 
                'scipionPrewhitenParams': prewhitenArgs
                }
        
        if self.useSplitVolume:
            # Read the second splitted volume
            data2 = MRC_Data(volumes[1],'ccp4')
            args.update({'vxSize': self.volumeHalf1.get().getSamplingRate(),
                         'inputFileName1': 'volume1.map',
                         'inputFileName2': 'volume2.map',
                         'data1': data1,
                         'data2': data2,
                         })
        else:
            args.update({'vxSize': self.inputVolume.get().getSamplingRate(),
                         'inputFileName': 'volume1.map',
                         'data': data1,
                         })   
            
        results = ResMap_algorithm(**args)  
        self._leaveDir()

        return results
    
    #--------- Functions related to Plotting
    
    def _getVolumeMatrix(self, volName):
        from ResMap_fileIO import MRC_Data
        
        volPath = self._getPath(volName)
        return MRC_Data(volPath, 'ccp4').matrix
    
    def _plotVolumeSlices(self, **kwargs):
        from ResMap_visualization import plotOriginalVolume
        fig = plotOriginalVolume(self._getVolumeMatrix('volume1.map'), **kwargs)
        return Plotter(figure=fig)
        
    def _plotResMapSlices(self, data=None, **kwargs):
        from ResMap_visualization import plotResMapVolume
        plotDict = loads(self.plotData.get())
        if data is None:
            data = self._getVolumeMatrix('volume1_resmap.map')
            data  = np.ma.masked_where(data > plotDict['currentRes'], data, copy=True)
        kwargs.update(plotDict)
        fig = plotResMapVolume(data, **kwargs)
        return Plotter(figure=fig)
             
    def _plotHistogram(self):
        from ResMap_visualization import plotResolutionHistogram
        histogramData = loads(self.histogramData.get())
        fig = plotResolutionHistogram(histogramData)
        return Plotter(figure=fig)    

    def _parseOutput(self):
        meanRes, medianRes = 0, 0
        f = open(self.getLogPaths()[0], 'r')
        for line in f.readlines():
            if 'MEAN RESOLUTION in MASK' in line:
                meanRes = line.strip().split('=')[1]
            elif 'MEDIAN RESOLUTION in MASK' in line:
                medianRes = line.strip().split('=')[1]
        f.close()

        return tuple(map(float, (meanRes, medianRes)))
Ejemplo n.º 7
0
class XmippProtDimredNMA(ProtAnalysis3D):
    """ This protocol will take the images with NMA deformations
    as points in a N-dimensional space (where N is the number
    of computed normal modes) and will project them in a reduced
    spaced (usually with less dimensions).
    """
    _label = 'nma dimred'

    def __init__(self, **kwargs):
        ProtAnalysis3D.__init__(self, **kwargs)
        self.mappingFile = String()

    #--------------------------- DEFINE param functions --------------------------------------------
    def _defineParams(self, form):
        form.addSection(label='Input')
        form.addParam('inputNMA',
                      PointerParam,
                      pointerClass='XmippProtAlignmentNMA',
                      label="Conformational distribution",
                      help='Select a previous run of the NMA alignment.')

        form.addParam('dimredMethod',
                      EnumParam,
                      default=DIMRED_PCA,
                      choices=[
                          'Principal Component Analysis (PCA)',
                          'Local Tangent Space Alignment', 'Diffusion map',
                          'Linear Local Tangent Space Alignment',
                          'Linearity Preserving Projection', 'Kernel PCA',
                          'Probabilistic PCA', 'Laplacian Eigenmap',
                          'Hessian Locally Linear Embedding',
                          'Stochastic Proximity Embedding',
                          'Neighborhood Preserving Embedding'
                      ],
                      label='Dim-Red method',
                      help=""" Dimensionality Reduction method.
    PCA
       Principal Component Analysis 
    LTSA <k=12>
       Local Tangent Space Alignment, k=number of nearest neighbours 
    DM <s=1> <t=1>
       Diffusion map, t=Markov random walk, s=kernel sigma 
    LLTSA <k=12>
       Linear Local Tangent Space Alignment, k=number of nearest neighbours 
    LPP <k=12> <s=1>
       Linearity Preserving Projection, k=number of nearest neighbours, s=kernel sigma 
    kPCA <s=1>
       Kernel PCA, s=kernel sigma 
    pPCA <n=200>
       Probabilistic PCA, n=number of iterations 
    LE <k=7> <s=1>
       Laplacian Eigenmap, k=number of nearest neighbours, s=kernel sigma 
    HLLE <k=12>
       Hessian Locally Linear Embedding, k=number of nearest neighbours 
    SPE <k=12> <global=1>
       Stochastic Proximity Embedding, k=number of nearest neighbours, global embedding or not 
    NPE <k=12>
       Neighborhood Preserving Embedding, k=number of nearest neighbours 
""")
        form.addParam('extraParams',
                      StringParam,
                      level=LEVEL_ADVANCED,
                      label="Extra params",
                      help='This parameters will be passed to the program.')

        form.addParam('reducedDim',
                      IntParam,
                      default=2,
                      label='Reduced dimension')
        form.addParallelSection(threads=0, mpi=0)

    #--------------------------- INSERT steps functions --------------------------------------------

    def _insertAllSteps(self):
        # Take deforamtions text file and the number of images and modes
        inputSet = self.getInputParticles()
        rows = inputSet.getSize()
        reducedDim = self.reducedDim.get()
        method = self.dimredMethod.get()
        extraParams = self.extraParams.get('')

        deformationsFile = self.getDeformationFile()

        self._insertFunctionStep('convertInputStep', deformationsFile,
                                 inputSet.getObjId())
        self._insertFunctionStep('performDimredStep', deformationsFile, method,
                                 extraParams, rows, reducedDim)
        self._insertFunctionStep('createOutputStep')

    #--------------------------- STEPS functions --------------------------------------------

    def convertInputStep(self, deformationFile, inputId):
        """ Iterate through the images and write the 
        plain deformation.txt file that will serve as 
        input for dimensionality reduction.
        """
        inputSet = self.getInputParticles()
        f = open(deformationFile, 'w')

        for particle in inputSet:
            f.write(' '.join(particle._xmipp_nmaDisplacements))
            f.write('\n')
        f.close()

    def performDimredStep(self, deformationsFile, method, extraParams, rows,
                          reducedDim):
        outputMatrix = self.getOutputMatrixFile()
        methodName = DIMRED_VALUES[method]
        # Get number of columes in deformation files
        # it can be a subset of inputModes
        f = open(deformationsFile)
        columns = len(
            f.readline().split())  # count number of values in first line
        f.close()

        args = "-i %(deformationsFile)s -o %(outputMatrix)s -m %(methodName)s %(extraParams)s"
        args += "--din %(columns)d --samples %(rows)d --dout %(reducedDim)d"
        if method in DIMRED_MAPPINGS:
            mappingFile = self._getExtraPath('projector.txt')
            args += " --saveMapping %(mappingFile)s"
            self.mappingFile.set(mappingFile)
        self.runJob("xmipp_matrix_dimred", args % locals())

    def createOutputStep(self):
        pass

    #--------------------------- INFO functions --------------------------------------------
    def _summary(self):
        summary = []
        return summary

    def _validate(self):
        errors = []
        return errors

    def _citations(self):
        return []

    def _methods(self):
        return []

    #--------------------------- UTILS functions --------------------------------------------

    def getInputParticles(self):
        """ Get the output particles of the input NMA protocol. """
        return self.inputNMA.get().outputParticles

    def getInputPdb(self):
        return self.inputNMA.get().getInputPdb()

    def getOutputMatrixFile(self):
        return self._getExtraPath('output_matrix.txt')

    def getDeformationFile(self):
        return self._getExtraPath('deformations.txt')

    def getProjectorFile(self):
        return self.mappingFile.get()

    def getMethodName(self):
        return DIMRED_VALUES[self.dimredMethod.get()]
Ejemplo n.º 8
0
class HostConfig(OrderedObject):
    """ Main store the configuration for execution hosts. """
    def __init__(self, **kwargs):
        OrderedObject.__init__(self, **kwargs)
        self.label = String(kwargs.get('label', None))
        self.hostName = String(kwargs.get('hostName', None))
        self.userName = String()
        self.password = String()
        self.hostPath = String()
        self.mpiCommand = String()
        self.scipionHome = String()
        self.scipionConfig = String()
        self.address = String()
        self.queueSystem = QueueSystemConfig()

    def getLabel(self):
        return self.label.get()

    def getHostName(self):
        return self.hostName.get()

    def getUserName(self):
        return self.userName.get()

    def getPassword(self):
        return self.password.get()

    def getHostPath(self):
        return self.hostPath.get()

    def getSubmitCommand(self):
        return self.queueSystem.submitCommand.get()

    def getSubmitPrefix(self):
        return self.queueSystem.submitPrefix.get()

    def getCheckCommand(self):
        return self.queueSystem.checkCommand.get()

    def getCancelCommand(self):
        return self.queueSystem.cancelCommand.get()

    def isQueueMandatory(self):
        return self.queueSystem.mandatory.get()

    def getSubmitTemplate(self):
        return self.queueSystem.getSubmitTemplate()

    def getQueuesDefault(self):
        return self.queueSystem.queuesDefault

    def getMpiCommand(self):
        return self.mpiCommand.get()

    def getQueueSystem(self):
        return self.queueSystem

    def getJobDoneRegex(self):
        return self.queueSystem.jobDoneRegex.get()

    def setLabel(self, label):
        self.label.set(label)

    def setHostName(self, hostName):
        self.hostName.set(hostName)

    def setUserName(self, userName):
        self.userName.set(userName)

    def setPassword(self, password):
        self.password.set(password)

    def setHostPath(self, hostPath):
        self.hostPath.set(hostPath)

    def setMpiCommand(self, mpiCommand):
        self.mpiCommand.set(mpiCommand)

    def setQueueSystem(self, queueSystem):
        self.queueSystem = queueSystem

    def getScipionHome(self):
        """ Return the path where Scipion is installed in 
        the host. This is useful when launching remote jobs.
        """
        return self.scipionHome.get()

    def setScipionHome(self, newScipionHome):
        self.scipionHome.set(newScipionHome)

    def getScipionConfig(self):
        """ From which file to read the configuration file in 
        this hosts. Useful for remote jobs.
        """
        return self.scipionConfig.get()

    def setScipionConfig(self, newConfig):
        self.scipionConfig.set(newConfig)

    def getAddress(self):
        return self.address.get()

    def setAddress(self, newAddress):
        return self.address.set(newAddress)

    @classmethod
    def writeBasic(cls, configFn):
        """ Write a very basic Host configuration for testing purposes. """
        with open(configFn, 'w') as f:
            f.write('[localhost]\nPARALLEL_COMMAND = '
                    'mpirun -np %%(JOB_NODES)d --map-by node %%(COMMAND)s\n')

    @classmethod
    def load(cls, hostsConf):
        """ Load several hosts from a configuration file.
        Return an dictionary with hostName -> hostConfig pairs.
        """
        # Read from users' config file. Raw to avoid interpolation of %: we expect %_
        cp = RawConfigParser(comment_prefixes=";")
        cp.optionxform = str  # keep case (stackoverflow.com/questions/1611799)
        hosts = OrderedDict()

        try:
            assert cp.read(hostsConf) != [], 'Missing file %s' % hostsConf

            for hostName in cp.sections():
                host = HostConfig(label=hostName, hostName=hostName)
                host.setHostPath(pw.Config.SCIPION_USER_DATA)

                # Helper functions (to write less)
                def get(var, default=None):
                    if cp.has_option(hostName, var):

                        value = cp.get(hostName, var)
                        # Rescue python2.7 behaviour: ## at the beginning of a line, means a single #.
                        # https://github.com/scipion-em/scipion-pyworkflow/issues/70
                        value = value.replace("\n##", "\n#")

                        # Keep compatibility: %_ --> %%
                        value = value.replace('%_(', '%(')

                        return value
                    else:
                        return default

                def getDict(var):
                    od = OrderedDict()

                    if cp.has_option(hostName, var):
                        for key, value in json.loads(get(var)).items():
                            od[key] = value

                    return od

                host.setScipionHome(
                    get(pw.SCIPION_HOME_VAR, pw.Config.SCIPION_HOME))
                host.setScipionConfig(pw.Config.SCIPION_CONFIG)
                # Read the address of the remote hosts,
                # using 'localhost' as default for backward compatibility
                host.setAddress(get('ADDRESS', 'localhost'))
                host.mpiCommand.set(get('PARALLEL_COMMAND'))
                host.queueSystem = QueueSystemConfig()
                hostQueue = host.queueSystem  # shortcut
                hostQueue.name.set(get('NAME'))

                # If the NAME is not provided or empty
                # do no try to parse the rest of Queue parameters
                if hostQueue.hasName():
                    hostQueue.setMandatory(get('MANDATORY', 0))
                    hostQueue.submitPrefix.set(get('SUBMIT_PREFIX', ''))
                    hostQueue.submitCommand.set(get('SUBMIT_COMMAND'))
                    hostQueue.submitTemplate.set(get('SUBMIT_TEMPLATE'))
                    hostQueue.cancelCommand.set(get('CANCEL_COMMAND'))
                    hostQueue.checkCommand.set(get('CHECK_COMMAND'))
                    hostQueue.jobDoneRegex.set(get('JOB_DONE_REGEX'))
                    hostQueue.queues = getDict('QUEUES')
                    hostQueue.queuesDefault = getDict('QUEUES_DEFAULT')

                hosts[hostName] = host

            return hosts
        except Exception as e:
            sys.exit('Failed to read settings. The reported error was:\n  %s\n'
                     'To solve it, delete %s and run again.' %
                     (e, os.path.abspath(hostsConf)))
Ejemplo n.º 9
0
class QueueSystemConfig(OrderedObject):
    def __init__(self, **kwargs):
        OrderedObject.__init__(self, **kwargs)
        self.name = String()
        # Number of cores from which the queue is mandatory
        # 0 means no mandatory at all
        # 1 will force to launch all jobs through the queue
        self.mandatory = Integer()
        self.queues = None  # List for queue configurations
        self.submitCommand = String()
        # Allow to change the prefix of submission scripts
        # we used by default the ID.job, but in some clusters
        # the job script should start by a letter
        self.submitPrefix = String()
        self.checkCommand = String()
        self.cancelCommand = String()
        self.submitTemplate = String()
        self.jobDoneRegex = String()

    def hasName(self):
        return self.name.hasValue()

    def hasValue(self):
        return self.hasName() and len(self.queues)

    def getName(self):
        return self.name.get()

    def getMandatory(self):
        return self.mandatory.get()

    def getSubmitTemplate(self):
        return self.submitTemplate.get()

    def getSubmitCommand(self):
        return self.submitCommand.get()

    def getCheckCommand(self):
        return self.checkCommand.get()

    def getCancelCommand(self):
        return self.cancelCommand.get()

    def getQueues(self):
        return self.queues

    def setName(self, name):
        self.name.set(name)

    def setMandatory(self, mandatory):
        # This condition is to be backward compatible
        # when mandatory was a boolean
        # now it should use the number of CPU
        # that should force to use the queue
        if mandatory in ['False', 'false']:
            mandatory = 0
        elif mandatory in ['True', 'true']:
            mandatory = 1

        self.mandatory.set(mandatory)

    def setSubmitTemplate(self, submitTemplate):
        self.submitTemplate.set(submitTemplate)

    def setSubmitCommand(self, submitCommand):
        self.submitCommand.set(submitCommand)

    def setCheckCommand(self, checkCommand):
        self.checkCommand.set(checkCommand)

    def setCancelCommand(self, cancelCommand):
        self.cancelCommand.set(cancelCommand)

    def setJobDoneRegex(self, jobDoneRegex):
        self.jobDoneRegex.set(jobDoneRegex)

    def setQueues(self, queues):
        self.queues = queues

    def getQueueConfig(self, objId):
        if objId is not None and self.queues is not None:
            for queueConfig in self.queues:
                if objId == queueConfig.getObjId():
                    return queueConfig
        return None
Ejemplo n.º 10
0
class XmippProtDimredNMA(ProtAnalysis3D):
    """ This protocol will take the images with NMA deformations
    as points in a N-dimensional space (where N is the number
    of computed normal modes) and will project them in a reduced
    spaced (usually with less dimensions).
    """
    _label = 'nma dimred'
    
    def __init__(self, **kwargs):
        ProtAnalysis3D.__init__(self, **kwargs)
        self.mappingFile = String()
    
    #--------------------------- DEFINE param functions --------------------------------------------
    def _defineParams(self, form):
        form.addSection(label='Input')
        form.addParam('inputNMA', PointerParam, pointerClass='XmippProtAlignmentNMA',
                      label="Conformational distribution",                        
                      help='Select a previous run of the NMA alignment.')
        
        form.addParam('dimredMethod', EnumParam, default=DIMRED_PCA,
                      choices=['Principal Component Analysis (PCA)',
                               'Local Tangent Space Alignment',
                               'Diffusion map',
                               'Linear Local Tangent Space Alignment',
                               'Linearity Preserving Projection',
                               'Kernel PCA',
                               'Probabilistic PCA',
                               'Laplacian Eigenmap',
                               'Hessian Locally Linear Embedding',
                               'Stochastic Proximity Embedding',
                               'Neighborhood Preserving Embedding'],
                      label='Dim-Red method',
                      help=""" Dimensionality Reduction method.
    PCA
       Principal Component Analysis 
    LTSA <k=12>
       Local Tangent Space Alignment, k=number of nearest neighbours 
    DM <s=1> <t=1>
       Diffusion map, t=Markov random walk, s=kernel sigma 
    LLTSA <k=12>
       Linear Local Tangent Space Alignment, k=number of nearest neighbours 
    LPP <k=12> <s=1>
       Linearity Preserving Projection, k=number of nearest neighbours, s=kernel sigma 
    kPCA <s=1>
       Kernel PCA, s=kernel sigma 
    pPCA <n=200>
       Probabilistic PCA, n=number of iterations 
    LE <k=7> <s=1>
       Laplacian Eigenmap, k=number of nearest neighbours, s=kernel sigma 
    HLLE <k=12>
       Hessian Locally Linear Embedding, k=number of nearest neighbours 
    SPE <k=12> <global=1>
       Stochastic Proximity Embedding, k=number of nearest neighbours, global embedding or not 
    NPE <k=12>
       Neighborhood Preserving Embedding, k=number of nearest neighbours 
""")
        form.addParam('extraParams', StringParam, level=LEVEL_ADVANCED,
                      label="Extra params", 
                      help='This parameters will be passed to the program.')
                      
        form.addParam('reducedDim', IntParam, default=2,
                      label='Reduced dimension')
        form.addParallelSection(threads=0, mpi=0)    
    
    
    #--------------------------- INSERT steps functions --------------------------------------------

    def _insertAllSteps(self):
        # Take deforamtions text file and the number of images and modes
        inputSet = self.getInputParticles()
        rows = inputSet.getSize()
        reducedDim = self.reducedDim.get()
        method = self.dimredMethod.get()
        extraParams = self.extraParams.get('')
        
        deformationsFile = self.getDeformationFile()
        
        self._insertFunctionStep('convertInputStep', 
                                 deformationsFile, inputSet.getObjId())
        self._insertFunctionStep('performDimredStep', 
                                 deformationsFile, method, extraParams,
                                 rows, reducedDim) 
        self._insertFunctionStep('createOutputStep')
        
        
    #--------------------------- STEPS functions --------------------------------------------   
    
    def convertInputStep(self, deformationFile, inputId):
        """ Iterate throught the images and write the 
        plain deformation.txt file that will serve as 
        input for dimensionality reduction.
        """
        inputSet = self.getInputParticles()
        f = open(deformationFile, 'w')
        
        for particle in inputSet:
            f.write(' '.join(particle._xmipp_nmaDisplacements))
            f.write('\n')
        f.close()
    
    def performDimredStep(self, deformationsFile, method, extraParams,
                          rows, reducedDim):
        outputMatrix = self.getOutputMatrixFile()
        methodName = DIMRED_VALUES[method]
        # Get number of columes in deformation files
        # it can be a subset of inputModes
        f = open(deformationsFile)
        columns = len(f.readline().split()) # count number of values in first line
        f.close()
        
        args = "-i %(deformationsFile)s -o %(outputMatrix)s -m %(methodName)s %(extraParams)s"
        args += "--din %(columns)d --samples %(rows)d --dout %(reducedDim)d"
        if method in DIMRED_MAPPINGS:
            mappingFile = self._getExtraPath('projector.txt')
            args += " --saveMapping %(mappingFile)s"
            self.mappingFile.set(mappingFile)
        self.runJob("xmipp_matrix_dimred", args % locals())
        
    def createOutputStep(self):
        pass

    #--------------------------- INFO functions --------------------------------------------
    def _summary(self):
        summary = []
        return summary
    
    def _validate(self):
        errors = []
        return errors
    
    def _citations(self):
        return []
    
    def _methods(self):
        return []
    
    #--------------------------- UTILS functions --------------------------------------------

    def getInputParticles(self):
        """ Get the output particles of the input NMA protocol. """
        return self.inputNMA.get().outputParticles
    
    def getInputPdb(self):
        return self.inputNMA.get().getInputPdb()
    
    def getOutputMatrixFile(self):
        return self._getExtraPath('output_matrix.txt')
    
    def getDeformationFile(self):
        return self._getExtraPath('deformations.txt')
    
    def getProjectorFile(self):
        return self.mappingFile.get()
    
    def getMethodName(self):
        return DIMRED_VALUES[self.dimredMethod.get()]
Ejemplo n.º 11
0
class HostConfig(OrderedObject):
    """ Main store the configuration for execution hosts. """
    
    def __init__(self, **kwargs):
        OrderedObject.__init__(self, **kwargs)
        self.label = String(kwargs.get('label', None))
        self.hostName = String(kwargs.get('hostName', None))
        self.userName = String()
        self.password = String()
        self.hostPath = String()
        self.mpiCommand = String()
        self.scipionHome = String()
        self.scipionConfig = String()
        self.address = String()
        self.queueSystem = QueueSystemConfig()
    
    def getLabel(self):
        return self.label.get()
    
    def getHostName(self):
        return self.hostName.get()
    
    def getUserName(self):
        return self.userName.get()
    
    def getPassword(self):
        return self.password.get()
    
    def getHostPath(self):
        return self.hostPath.get()
    
    def getSubmitCommand(self):
        return self.queueSystem.submitCommand.get()
    
    def getSubmitPrefix(self):
        return self.queueSystem.submitPrefix.get()

    def getCheckCommand(self):
        return self.queueSystem.checkCommand.get()

    def getCancelCommand(self):
        return self.queueSystem.cancelCommand.get()
    
    def isQueueMandatory(self):
        return self.queueSystem.mandatory.get()
    
    def getSubmitTemplate(self):
        return self.queueSystem.getSubmitTemplate()
    
    def getQueuesDefault(self):
        return self.queueSystem.queuesDefault
    
    def getMpiCommand(self):
        return self.mpiCommand.get()
    
    def getQueueSystem(self):
        return self.queueSystem

    def getJobDoneRegex(self):
        return self.queueSystem.jobDoneRegex.get()
    
    def setLabel(self, label):
        self.label.set(label)
    
    def setHostName(self, hostName):
        self.hostName.set(hostName)
    
    def setUserName(self, userName):
        self.userName.set(userName)
    
    def setPassword(self, password):
        self.password.set(password)
    
    def setHostPath(self, hostPath):
        self.hostPath.set(hostPath)
    
    def setMpiCommand(self, mpiCommand):
        self.mpiCommand.set(mpiCommand)  
        
    def setQueueSystem(self, queueSystem):
        self.queueSystem = queueSystem
        
    def getScipionHome(self):
        """ Return the path where Scipion is installed in 
        the host. This is useful when launching remote jobs.
        """ 
        return self.scipionHome.get()
    
    def setScipionHome(self, newScipionHome):
        self.scipionHome.set(newScipionHome)
        
    def getScipionConfig(self):
        """ From which file to read the configuration file in 
        this hosts. Useful for remote jobs.
        """
        return self.scipionConfig.get()
    
    def setScipionConfig(self, newConfig):
        self.scipionConfig.set(newConfig)
        
    def getAddress(self):
        return self.address.get()
    
    def setAddress(self, newAddress):
        return self.address.set(newAddress)

    @classmethod
    def load(cls, hostsConf):
        """ Load several hosts from a configuration file.
        Return an dictionary with hostName -> hostConfig pairs.
        """
        # Read from users' config file.
        cp = ConfigParser()
        cp.optionxform = str  # keep case (stackoverflow.com/questions/1611799)
        hosts = OrderedDict()

        try:
            assert cp.read(hostsConf) != [], 'Missing file %s' % hostsConf

            for hostName in cp.sections():
                host = HostConfig(label=hostName, hostName=hostName)
                host.setHostPath(pw.Config.SCIPION_USER_DATA)

                # Helper functions (to write less)
                def get(var, default=None):
                    if cp.has_option(hostName, var):
                        return cp.get(hostName, var).replace('%_(', '%(')
                    else:
                        return default

                def getDict(var):
                    od = OrderedDict()

                    if cp.has_option(hostName, var):
                        for key, value in json.loads(get(var)).iteritems():
                            od[key] = value

                    return od

                host.setScipionHome(get('SCIPION_HOME', pw.Config.SCIPION_HOME))
                host.setScipionConfig(get('SCIPION_CONFIG'))
                # Read the address of the remote hosts,
                # using 'localhost' as default for backward compatibility
                host.setAddress(get('ADDRESS', 'localhost'))
                host.mpiCommand.set(get('PARALLEL_COMMAND'))
                host.queueSystem = QueueSystemConfig()
                hostQueue = host.queueSystem  # shortcut
                hostQueue.name.set(get('NAME'))

                # If the NAME is not provided or empty
                # do no try to parse the rest of Queue parameters
                if hostQueue.hasName():
                    hostQueue.setMandatory(get('MANDATORY', 0))
                    hostQueue.submitPrefix.set(get('SUBMIT_PREFIX', ''))
                    hostQueue.submitCommand.set(get('SUBMIT_COMMAND'))
                    hostQueue.submitTemplate.set(get('SUBMIT_TEMPLATE'))
                    hostQueue.cancelCommand.set(get('CANCEL_COMMAND'))
                    hostQueue.checkCommand.set(get('CHECK_COMMAND'))
                    hostQueue.jobDoneRegex.set(get('JOB_DONE_REGEX'))
                    hostQueue.queues = getDict('QUEUES')
                    hostQueue.queuesDefault = getDict('QUEUES_DEFAULT')

                hosts[hostName] = host

            return hosts
        except Exception as e:
            sys.exit('Failed to read settings. The reported error was:\n  %s\n'
                     'To solve it, delete %s and run again.' % (e, hostsConf))
Ejemplo n.º 12
0
class ProtResMap(ProtAnalysis3D):
    """
    ResMap is software tool for computing the local resolution of 3D
    density maps studied in structural biology, primarily by cryo-electron
    microscopy (cryo-EM).
     
    Please find the manual at http://resmap.sourceforge.net 
    """
    _label = 'local resolution'
    
    def __init__(self, **kwargs):
        ProtAnalysis3D.__init__(self, **kwargs)
        self.histogramData = String()
             
    #--------------------------- DEFINE param functions --------------------------------------------   
    
    def _defineParams(self, form):
        form.addSection(label='Input')
        form.addParam('inputVolume', PointerParam, pointerClass='Volume',  
                      label="Input volume", important=True,
                      help='Select the input volume.')
        form.addParam('useSplitVolume', BooleanParam, default=False,
                      label="Use split volume?", 
                      help='Use to split volumes for gold-standard FSC.')                
        form.addParam('splitVolume', PointerParam, label="Split volume", important=True, 
                      pointerClass='Volume', condition="useSplitVolume",
                      help='Select the second split volume.')  
        form.addParam('applyMask', BooleanParam, default=False,
                      label="Mask input volume?", 
                      help='If set to <No> ResMap will automatically compute a mask.')                
        form.addParam('maskVolume', PointerParam, label="Mask volume",  
                      pointerClass='VolumeMask', condition="applyMask",
                      help='Select a volume to apply as a mask.')
        
        line = form.addLine('Pre-whitening')
        line.addParam('prewhitenAng', FloatParam, default=0, label="Angstroms")
        line.addParam('prewhitenRamp', FloatParam, default=0, label='Ramp')                      
        
        group = form.addGroup('Extra parameters')
        #form.addSection(label='Optional')
        group.addParam('stepRes', FloatParam, default=1,
                      label='Step size (Ang):',
                      help='in Angstroms (min 0.25, default 1.0)')
        line = group.addLine('Resolution Range (A)', 
                            help='Default: algorithm will start a just above 2*voxelSize')
        line.addParam('minRes', FloatParam, default=0, label='Min')
        line.addParam('maxRes', FloatParam, default=0, label='Max')
        group.addParam('pVal', FloatParam, default=0.05,
                      label='Confidence level:',
                      help='usually between [0.01, 0.05]')   
                     
    #--------------------------- INSERT steps functions --------------------------------------------  
    
    def _insertAllSteps(self):
        # Insert processing steps
        inputs = [self.inputVolume.get().getLocation()]
        if self.useSplitVolume:
            inputs.append(self.splitVolume.get().getLocation())
            
        self._insertFunctionStep('convertInputStep', *inputs)
        self._insertFunctionStep('estimateResolutionStep', 
                                 self.pVal.get(), 
                                 self.minRes.get(), 
                                 self.maxRes.get(), 
                                 self.stepRes.get(),
                                 self.prewhitenAng.get(),
                                 self.prewhitenRamp.get())
        self._insertFunctionStep('savePlotsStep')

    #--------------------------- STEPS functions --------------------------------------------       
    
    def convertInputStep(self, volLocation1, volLocation2=None):
        """ Convert input volume to .mrc as expected by ResMap. 
        Params:
            volLocation1: a tuple containing index and filename of the input volume.
            volLocation2: if not None, a tuple like volLocation1 for the split volume.
        """
        ih = ImageHandler()
        ih.convert(volLocation1, self._getPath('volume1.map'))
        if volLocation2 is not None:
            ih.convert(volLocation2, self._getPath('volume2.map')) 
            

    def estimateResolutionStep(self, pValue, minRes, maxRes, stepRes, ang, rampWeight):
        """ Call ResMap.py with the appropiate parameters. """
        results = self.runResmap(self._getPath())
        
        from cPickle import dumps
        self.histogramData.set(dumps(results['resHisto']))
        self._store(self.histogramData)
        
    def savePlotsStep(self):
        """ Store png images of the plots to be used
        from web. 
        """
        # Add resmap libraries to the path
        sys.path.append(os.environ['RESMAP_HOME'])
        # This is needed right now because we are having
        # some memory problem with matplotlib plots right now in web
        Plotter.setBackend('Agg')
        self._plotVolumeSlices().savefig(self._getExtraPath('volume1.map.png'))
        self._plotResMapSlices().savefig(self._getExtraPath('volume1_resmap.map.png'))
        self._plotHistogram().savefig(self._getExtraPath('histogram.png'))
        
    #--------------------------- INFO functions -------------------------------------------- 
    
    def _summary(self):
        summary = []
        return summary
    
    def _validate(self):
        errors = []
                
        return errors
    
    #--------------------------- UTILS functions --------------------------------------------
 
    def runResmap(self, workingDir, wizardMode=False):
        """ Prepare the args dictionary to be used
        and call the ResMap algorithm.
        Params:
            workingDir: where to run ResMap
            wizardMode: some custom params to be used by the wizard
                to display the pre-whitening GUI and only that.
        with the  """
        self._enterDir(workingDir)
        
        volumes = ['volume1.map', 'volume2.map']
        
        # Add resmap libraries to the path
        sys.path.append(os.environ['RESMAP_HOME'])
        from ResMap_algorithm import ResMap_algorithm
        from ResMap_fileIO import MRC_Data
        
        # Always read the first volume as mrc data
        data1 = MRC_Data(volumes[0],'ccp4')
        
        prewhitenArgs = {'display': wizardMode,
                         'force-stop': wizardMode                         
                         }
        if (self.prewhitenAng.hasValue() and 
            self.prewhitenRamp.hasValue()):
            prewhitenArgs['newElbowAngstrom'] = self.prewhitenAng.get()
            prewhitenArgs['newRampWeight'] = self.prewhitenRamp.get()
            
        args = {'vxSize': self.inputVolume.get().getSamplingRate(),
                'pValue': self.pVal.get(),
                'minRes': self.minRes.get(), 
                'maxRes': self.maxRes.get(),
                'stepRes': self.stepRes.get(),
                'chimeraLaunch': False, # prevent ResMap to launch some graphical analysis
                'graphicalOutput': False, 
                'scipionPrewhitenParams': prewhitenArgs
                }
        
        if self.useSplitVolume:
            # Read the second splitted volume
            data2 = MRC_Data(volumes[1],'ccp4')
            args.update({'inputFileName1': 'volume1.map',
                         'inputFileName2': 'volume2.map',
                         'data1': data1,
                         'data2': data2,
                         })
        else:
            args.update({'inputFileName': 'volume1.map',
                         'data': data1,
                         })   
            
        results = ResMap_algorithm(**args)  
        self._leaveDir()
        
        return results   
    
    #--------- Functions related to Plotting
    
    def _getVolumeMatrix(self, volName):
        from ResMap_fileIO import MRC_Data
        
        volPath = self._getPath(volName)
        return MRC_Data(volPath, 'ccp4').matrix
    
    def _plotVolumeSlices(self):
        from ResMap_visualization import plotOriginalVolume
        
        fig = plotOriginalVolume(self._getVolumeMatrix('volume1.map'))
        return Plotter(figure=fig)
        
    def _plotResMapSlices(self):
        from ResMap_visualization import plotResMapVolume
        
        fig = plotResMapVolume(self._getVolumeMatrix('volume1_resmap.map'),
                                  minRes=self.minRes.get(),
                                  maxRes=self.maxRes.get())
        return Plotter(figure=fig)
             
    def _plotHistogram(self):
        from ResMap_visualization import plotResolutionHistogram
        from cPickle import loads
        histogramData = loads(self.histogramData.get())
        fig = plotResolutionHistogram(histogramData)
        return Plotter(figure=fig)