Ejemplo n.º 1
0
    def index_vectors(self, mag_tol, angle_tol, index_error_tol,
                      n_peaks_to_index, n_best, *args, **kwargs):
        """Assigns hkl indices to diffraction vectors.

        Parameters
        ----------
        mag_tol : float
            The maximum absolute error in diffraction vector magnitude, in units
            of reciprocal Angstroms, allowed for indexation.
        angle_tol : float
            The maximum absolute error in inter-vector angle, in units of
            degrees, allowed for indexation.
        index_error_tol : float
            Max allowed error in peak indexation for classifying it as indexed,
            calculated as :math:`|hkl_calculated - round(hkl_calculated)|`.
        n_peaks_to_index : int
            The maximum number of peak to index.
        n_best : int
            The maximum number of good solutions to be retained.
        *args : arguments
            Arguments passed to the map() function.
        **kwargs : arguments
            Keyword arguments passed to the map() function.

        Returns
        -------
        indexation_results : VectorMatchingResults
            Navigation axes of the diffraction vectors signal containing vector
            indexation results for each probe position.
        """
        vectors = self.vectors
        library = self.library

        matched = vectors.cartesian.map(match_vectors,
                                        library=library,
                                        mag_tol=mag_tol,
                                        angle_tol=np.deg2rad(angle_tol),
                                        index_error_tol=index_error_tol,
                                        n_peaks_to_index=n_peaks_to_index,
                                        n_best=n_best,
                                        inplace=False,
                                        *args,
                                        **kwargs)
        indexation = matched.isig[0]
        rhkls = matched.isig[1].data

        indexation_results = VectorMatchingResults(indexation)
        indexation_results.vectors = vectors
        indexation_results.hkls = rhkls
        indexation_results = transfer_navigation_axes(indexation_results,
                                                      vectors.cartesian)

        vectors.hkls = rhkls

        return indexation_results
Ejemplo n.º 2
0
    def refine_n_best_orientations(
        self,
        orientations,
        accelarating_voltage,
        camera_length,
        n_best=0,
        rank=0,
        index_error_tol=0.2,
        vary_angles=True,
        vary_center=False,
        vary_scale=False,
        method="leastsq",
    ):
        """Refines the best orientation and assigns hkl indices to diffraction vectors.

        Parameters
        ----------
        orientations : VectorMatchingResults
            List of orientations to refine, must be an instance of `VectorMatchingResults`.
        accelerating_voltage : float
            The acceleration voltage with which the data was acquired.
        camera_length : float
            The camera length in meters.
        n_best : int
            Refine the best `n` orientations starting from `rank`.
            With `n_best=0` (default), all orientations are refined.
        rank : int
            The rank of the solution to start from.
        index_error_tol : float
            Max allowed error in peak indexation for classifying it as indexed,
            calculated as :math:`|hkl_calculated - round(hkl_calculated)|`.
        method : str
            Minimization algorithm to use, choose from:
            'leastsq', 'nelder', 'powell', 'cobyla', 'least-squares'.
            See `lmfit` documentation (https://lmfit.github.io/lmfit-py/fitting.html)
            for more information.
        vary_angles : bool,
            Free the euler angles (rotation matrix) during the refinement.
        vary_center : bool
            Free the center of the diffraction pattern (beam center) during the refinement.
        vary_scale : bool
            Free the scale (i.e. pixel size) of the diffraction vectors during refinement.

        Returns
        -------
        indexation_results : VectorMatchingResults
            Navigation axes of the diffraction vectors signal containing vector
            indexation results for each probe position.
        """
        vectors = self.vectors
        library = self.library

        matched = orientations.map(
            _refine_best_orientations,
            vectors=vectors,
            library=library,
            accelarating_voltage=accelarating_voltage,
            camera_length=camera_length,
            n_best=n_best,
            rank=rank,
            method="leastsq",
            verbose=False,
            vary_angles=vary_angles,
            vary_center=vary_center,
            vary_scale=vary_scale,
            inplace=False,
            parallel=False,
        )

        indexation = matched.isig[0]
        rhkls = matched.isig[1].data

        indexation_results = VectorMatchingResults(indexation)
        indexation_results.vectors = vectors
        indexation_results.hkls = rhkls
        indexation_results = transfer_navigation_axes(indexation_results,
                                                      vectors.cartesian)

        return indexation_results
Ejemplo n.º 3
0
    def index_vectors(self,
                      mag_tol,
                      angle_tol,
                      index_error_tol,
                      n_peaks_to_index,
                      n_best,
                      keys=[],
                      *args,
                      **kwargs):
        """Assigns hkl indices to diffraction vectors.

        Parameters
        ----------
        mag_tol : float
            The maximum absolute error in diffraction vector magnitude, in units
            of reciprocal Angstroms, allowed for indexation.
        angle_tol : float
            The maximum absolute error in inter-vector angle, in units of
            degrees, allowed for indexation.
        index_error_tol : float
            Max allowed error in peak indexation for classifying it as indexed,
            calculated as |hkl_calculated - round(hkl_calculated)|.
        n_peaks_to_index : int
            The maximum number of peak to index.
        n_best : int
            The maximum number of good solutions to be retained.
        keys : list
            If more than one phase present in library it is recommended that
            these are submitted. This allows a mapping from the number to the
            phase.  For example, keys = ['si','ga'] will have an output with 0
            for 'si' and 1 for 'ga'.
        *args : arguments
            Arguments passed to the map() function.
        **kwargs : arguments
            Keyword arguments passed to the map() function.

        Returns
        -------
        indexation_results : VectorMatchingResults
            Navigation axes of the diffraction vectors signal containing vector
            indexation results for each probe position.
        """
        vectors = self.vectors
        library = self.library

        matched = vectors.cartesian.map(
            match_vectors,
            library=library,
            mag_tol=mag_tol,
            angle_tol=np.deg2rad(angle_tol),
            index_error_tol=index_error_tol,
            n_peaks_to_index=n_peaks_to_index,
            n_best=n_best,
            keys=keys,
            inplace=False,
            parallel=False,  # TODO: For testing
            *args,
            **kwargs)
        indexation = np.array(matched.isig[0].data.tolist(), dtype='object')
        rhkls = matched.isig[1].data

        indexation_results = VectorMatchingResults(indexation)
        indexation_results.vectors = vectors
        indexation_results.hkls = rhkls
        indexation_results = transfer_navigation_axes(indexation_results,
                                                      vectors.cartesian)

        vectors.hkls = rhkls

        return indexation_results