Ejemplo n.º 1
0
def get_agent(environment):
    if FLAGS.agent == 'q-learner':
        return QLearner(env, FLAGS.discount_factor)
    elif FLAGS.agent == 'deep-q-learner':
        return DeepQLearner(env, FLAGS.discount_factor)
    else:
        raise ValueError('Unknown agent: {}'.format(FLAGS.agent))
def main():
    prng = np.random.RandomState(ps.PRNG_SEED)
    sensor_decoder = SensorDecoder(n_fragments=ps.N_FRAGMENTS,
                                   n_checksum_bytes=ps.N_CHECKSUM_BYTES,
                                   frame_counter_position=ps.FRAME_COUNTER_POS,
                                   fragment_id_position=ps.FRAGMENT_ID_POS,
                                   img_data_position=ps.IMG_DATA_POS,
                                   img_fragment_length=ps.IMG_FRAGMENT_LENGTH,
                                   action_position=ps.ACTION_POS,
                                   reward_position=ps.REWARD_POS,
                                   n_reward_bytes=ps.N_REWARD_BYTES)

    labeling_net = load_labeling_function(ps.LABELING_NETWORK_FILE_NAME,
                                          ps.MB_SIZE,
                                          ps.LABELING_NETWORK_USE_LAYER)
    state_encoder_fn = labeling_net.get_single_output

    q_function = load_q_network(ps.Q_NETWORK_LOAD_FILENAME, ps.STATE_STM,
                                ps.PERCEPT_LENGTH, ps.Q_HIDDEN_NEURONS,
                                ps.N_ACTIONS, ps.MB_SIZE)

    q_learner = QLearner(q_function,
                         exp_store_size=ps.EXP_STORE_SIZE,
                         percept_length=ps.PERCEPT_LENGTH,
                         n_actions=ps.N_ACTIONS,
                         state_stm=ps.STATE_STM,
                         gamma=ps.GAMMA,
                         minibatch_size=ps.MB_SIZE,
                         prng=prng)

    log_path = ps.LOG_PATH + time.strftime('%Y-%m-%d_%H-%M-%S') + '/'
    copy_parameter_file(log_path)

    # quality_logger = QualityLogger(ps.QUALITY_LOG_PATH)

    main_controller = MainController(
        q_learner,
        sensor_decoder=sensor_decoder,
        state_encoder_fn=state_encoder_fn,
        timeout_period=ps.TIMEOUT_PERIOD,
        remote_host=ps.REMOTE_HOST,
        remote_port=ps.REMOTE_PORT,
        learning_rate=ps.LEARNING_RATE,
        learning_iterations_per_step=ps.LEARNING_ITERATIONS_PER_STEP,
        random_action_duration=ps.RANDOM_ACTION_DURATION,
        epsilon_decrease_duration=ps.EPSILON_DECREASE_DURATION,
        epsilon_start=ps.EPSILON_START,
        epsilon_end=ps.EPSILON_END,
        burn_in=ps.BURN_IN,
        frame_counter_increment=ps.FRAME_COUNTER_INC_STEP,
        prng=prng,
        training_error_smoothing=ps.TRAIN_ERROR_SMOOTHING,
        log_path=log_path,
        reward_smoothing=ps.REWARD_SMOOTHING,
        quality_logger=QualityLogger(ps.QUALITY_LOG_PATH))

    print 'Starting main loop.'
    while 1:
        main_controller.do()
Ejemplo n.º 3
0
def main():
    mdp:MarkovDecisionProcess = MarkovDecisionProcess()
    mdp.set_field(1, 1, Field.OBSTACLE)
    mdp.set_field(3, 2, Field.POS_TERMINAL)
    mdp.set_field(3, 1, Field.NEG_TERMINAL)
    print(mdp)

    q_learner:QLearner = QLearner(mdp)

    while True:
        if mdp.terminated:
            mdp.restart()
        q_learner.print_actions()
        input("enter to advance")
        q_learner.step()
        print(q_learner)
Ejemplo n.º 4
0
                action_list = json.load(infile)
        else:
            action_list = algs.search(
                structs.PriorityQueue, args['size'],
                lambda successor: algs.heuristic(successor))[0]
            outfile = open('path.json', 'w')
            dump = json.dumps(action_list,
                              sort_keys=True,
                              indent=2,
                              separators=(',', ': '))
            outfile.write(dump)

        main(action_list=action_list)

    elif args['learn']:
        path = None
        if args['weights']:
            path = 'training/demo.json'

        main(agent=QLearner(import_from=path,
                            export_to='training/weights.json',
                            epsilon=None,
                            ld=1,
                            training=True))

    elif args['demo']:
        main(agent=QLearner(import_from='training/demo.json', training=False))

    else:
        main()
Ejemplo n.º 5
0
            fig2 = plt.figure(1)
            ax2 = fig2.add_subplot(1, 1, 1)
            ax2.clear()
            ax2.plot(x, mean_rewards_y)
            plt.savefig(os.path.join(save_dir, "mean_rewards.png"))


if __name__ == "__main__":
    rospy.init_node('learning')
    env = gym.make('Learning-v0')

    # Replay policy
    # sourceQ_file = os.path.join(rospkg.RosPack().get_path('learning'), 'csv/sim', 'replay_policy', 'Q.csv')
    sourceQ_file = None
    if sourceQ_file != None:
        save_dir = os.path.join(rospkg.RosPack().get_path('learning'),
                                'csv/sim', 'replay_policy')
    else:
        save_dir = os.path.join(rospkg.RosPack().get_path('learning'),
                                'csv/sim', 'learn_policy_v7')

    # Additional parameters
    agent = QLearner(
        env
    )  #, sourceQ_file=sourceQ_file) # include sourceQ_file if you want to replay a policy
    render = False
    num_episodes = 500000  # 200 episodes per minute

    run(env, agent, render, save_dir, num_episodes)

    rospy.spin()
# def state_encoder_fn(x): return pca_encoder.transform(x)[0]

if q_network_load_filename is not None:
    q_function = QNetwork.load_from_file(q_network_load_filename, MB_SIZE)
else:
    hidden_layer = FullyConnectedLayer(STATE_STM * PERCEPT_LENGTH,
                                       Q_HIDDEN_NEURONS)
    output_layer = FullyConnectedLayer(Q_HIDDEN_NEURONS,
                                       N_ACTIONS,
                                       activation_fn=linear)
    q_function = QNetwork([hidden_layer, output_layer], minibatch_size=MB_SIZE)

q_learner = QLearner(q_function,
                     exp_store_size=EXP_STORE_SIZE,
                     percept_length=PERCEPT_LENGTH,
                     n_actions=N_ACTIONS,
                     state_stm=STATE_STM,
                     gamma=GAMMA,
                     minibatch_size=MB_SIZE,
                     prng=prng)

if enable_plotting:
    bar_plotter = livebarchart.LiveBarPlotter(n_categories=5,
                                              n_bars_per_category=5)

PORT = 8888
IP = "0.0.0.0"

REMOTE_HOST = "127.0.0.1"
REMOTE_PORT = 8889

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    def test_all(self, save_dir, label_types, percentile, num_runs, budget_list, percent_sim_data, state_visits):
        self.label_types = label_types
        self.save_dir = save_dir
        self.percentile = percentile
        self.num_runs = num_runs
        self.filenames = {"sourceQ": self.sourceQ_file,
                          "targetQ": self.targetQ_file,
                          "sim_on_real": os.path.join(self.save_dir, "sim_on_real"),
                          "data": os.path.join(self.save_dir, "data.csv"),
                          "results": os.path.join(self.save_dir, "results.csv"),
                          "true_sim": os.path.join(self.save_dir, "true_sim_data.csv"),
                          "true_real": os.path.join(self.save_dir, "true_real_data.csv"),
                          "acceptable_actions": os.path.join(self.save_dir, "acceptable_actions.csv")}
        self.estimation_baselines = ["dawid_skene", "majority_vote"]
        self.classifier_baselines = ["dawid_skene", "majority_vote", "all_labels"]
        self.estimation_metrics = ["accuracy", "error", "error1s"]
        self.classifier_metrics = ["average_precision_score", "mean_squared_error","f1_score","accuracy_score","precision_score","recall_score"] #"roc_auc_score",
        self.test_data_list = ["seen","unseen","all"]
        self.oracle_in_loop_baselines = ["model_query", "always_query", "never_query"]
        self.oracle_in_loop_metrics = ["avg_reward","percent_queries"]
        self.estimation_results = {}
        self.classifier_results = {}
        self.oracle_in_loop_results = {}
        self.data_sizes = {}

        if len(state_visits) > 0:
            self.filenames["sim_on_real"] = state_visits
        else:
            agent = QLearner(self.target_env, sourceQ_file=self.sourceQ_file)
            run(self.target_env, agent, False, self.filenames["sim_on_real"], 10000)

        x_label = "Budget"
        x_list = budget_list

        for label_type in label_types:
            label = label_type[0]
            self.data_sizes[label] = -1

        # Creating data structures to store results
        for label_type in label_types:
            label = label_type[0]
            if label not in self.estimation_results:
                self.estimation_results[label] = {}
            for metric in self.estimation_metrics:
                if metric not in self.estimation_results[label]:
                    self.estimation_results[label][metric] = {}
                for baseline in self.estimation_baselines:
                    self.estimation_results[label][metric][baseline] = np.zeros((len(x_list), self.num_runs), dtype=np.float64)
        for label_type in label_types:
            label = label_type[0]
            if label not in self.classifier_results:
                self.classifier_results[label] = {}
            for metric in self.classifier_metrics:
                if metric not in self.classifier_results[label]:
                    self.classifier_results[label][metric] = {}
                for test_data in self.test_data_list:
                    if test_data not in self.classifier_results[label][metric]:
                        self.classifier_results[label][metric][test_data] = {}
                    for baseline in self.classifier_baselines:
                        self.classifier_results[label][metric][test_data][baseline] = np.zeros((len(x_list), self.num_runs), dtype=np.float64)
        for label_type in label_types:
            label = label_type[0]
            if label not in self.oracle_in_loop_results:
                self.oracle_in_loop_results[label] = {}
                for metric in self.oracle_in_loop_metrics:
                    if metric not in self.oracle_in_loop_results[label]:
                        self.oracle_in_loop_results[label][metric] = {}
                        for i in self.oracle_in_loop_baselines:
                            self.oracle_in_loop_results[label][metric][i] = np.zeros((len(x_list), self.num_runs), dtype=np.float64)

        # Run approach many times (based on num_runs) and with the whole range of budget values
        for num in range(self.num_runs):
            self.target_env.env.generate_training_subset(percent_sim_data)
            self.target_env.env.set_to_training_set()
            for i in range(len(x_list)):
                x = x_list[i]
                self.max_states = -1
                for label_type in label_types:
                    print(label_type," ",x)
                    self.test_one_instance(label_type, (i, x), (0, percent_sim_data), num)
            self.write_results(label_types, x_list, num)
Ejemplo n.º 8
0
        mean_rewards.append(float(np.mean(all_rewards[-100:])))
        if i_episode % save_freq == 0:
            x = range(i_episode + 1)[::interval]
            mean_rewards_y = mean_rewards[::interval]

            agent.saveQ(save_dir)
            agent.save_debug_info(save_dir)

            fig2 = plt.figure(1)
            ax2 = fig2.add_subplot(1, 1, 1)
            ax2.clear()
            ax2.plot(x, mean_rewards_y)
            plt.savefig(os.path.join(save_dir, "mean_rewards.png"))


if __name__ == "__main__":
    # Env name to train on (e.g., MyCatcher-v0)
    env = gym.make(sys.argv[1])

    # If a learned Q-value file is given, the game will be rendered, and the agent will play according to the learned Q-value function.
    if len(sys.argv) >= 4:
        agent = QLearner(env, sourceQ_file=sys.argv[3])
        render = True
    else:
        agent = QLearner(env)
        render = False

    num_episodes = 10000000
    save_dir = sys.argv[2]

    run(env, agent, render, save_dir, num_episodes)