Ejemplo n.º 1
0
        self.w = theano.shared(w)
        self.lr = 10e-2

        X = T.matrix('X')
        Y = T.vector('Y')
        Y_hat = X.dot(self.w)
        delta = Y - Y_hat
        cost = delta.dot(delta)
        grad = T.grad(cost, self.w)
        updates = [(self.w, self.w - self.lr * grad)]

        self.train_op = theano.function(
            inputs=[X, Y],
            updates=updates,
        )
        self.predict_op = theano.function(
            inputs=[X],
            outputs=Y_hat,
        )

    def partial_fit(self, X, Y):
        self.train_op(X, Y)

    def predict(self, X):
        return self.predict_op(X)


if __name__ == '__main__':
    q_learning.SGDRegressor = SGDRegressor
    q_learning.main()
    self.w = theano.shared(w)
    self.lr = 0.1

    X = T.matrix('X')
    Y = T.vector('Y')
    Y_hat = X.dot(self.w)
    delta = Y - Y_hat
    cost = delta.dot(delta)
    grad = T.grad(cost, self.w)
    updates = [(self.w, self.w - self.lr*grad)]

    self.train_op = theano.function(
      inputs=[X, Y],
      updates=updates,
    )
    self.predict_op = theano.function(
      inputs=[X],
      outputs=Y_hat,
    )

  def partial_fit(self, X, Y):
    self.train_op(X, Y)

  def predict(self, X):
    return self.predict_op(X)


if __name__ == '__main__':
  q_learning.SGDRegressor = SGDRegressor
  q_learning.main()