Ejemplo n.º 1
0
    def __init__(self,
                 indim,
                 outdim,
                 bias=True,
                 gate_activation="sigmoid",
                 activation="tanh",
                 recurrent_batch_norm=None):
        super(_LSTMCell, self).__init__()
        self.indim, self.outdim, self.use_bias = indim, outdim, bias
        self.gate_activation, self.activation = gate_activation, activation  # sigm, tanh
        self.hdim = self.outdim
        if self.activation == "crelu":
            self.hdim = self.hdim // 2
        self._rbn_on = recurrent_batch_norm
        self._rbn_gates = self._rbn_on == "full"

        self.gates = PackedRNUGates(self.indim + self.outdim,
                                    [(self.outdim, self.gate_activation),
                                     (self.outdim, self.gate_activation),
                                     (self.outdim, self.gate_activation),
                                     (self.hdim, None)],
                                    use_bias=self.use_bias,
                                    rec_bn=self._rbn_gates)
        self.activation_fn = q.name2fn(activation)()
        self.reset_parameters()
Ejemplo n.º 2
0
 def __init__(self, indim, outgatespecs, use_bias=True, rec_bn=False):
     super(PackedRNUGates, self).__init__()
     self.indim = indim
     self.outdim = 0
     self.outgates = []
     self.use_bias = use_bias
     for outgatespec in outgatespecs:
         gateoutdim = outgatespec[0]
         gateact = outgatespec[1]
         gateact_fn = q.name2fn(gateact)()
         self.outgates.append(
             ((self.outdim, self.outdim + gateoutdim), gateact_fn))
         self.outdim += gateoutdim
     self.W = nn.Parameter(torch.FloatTensor(self.indim, self.outdim))
     if self.use_bias:
         self.b = nn.Parameter(torch.FloatTensor(
             1,
             self.outdim,
         ))
     else:
         self.register_parameter("b", None)
     self.rec_bn = rec_bn
     self._rbn = None
     if self.rec_bn is True:
         self._rbn = q.SeqBatchNorm1d(self.outdim)
     self.reset_parameters()
Ejemplo n.º 3
0
 def __init__(self, d_hid, d_inner_hid, activation="relu", dropout=0.1):
     super(PositionwiseForward, self).__init__()
     self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1)  # position-wise
     self.w_2 = nn.Conv1d(d_inner_hid, d_hid, 1)  # position-wise
     self.layer_norm = q.LayerNormalization(d_hid)
     self.dropout = nn.Dropout(dropout)
     self.activation_fn = q.name2fn(activation)()
Ejemplo n.º 4
0
 def __init__(self, ldim, rdim, aggdim, activation="tanh", use_bias=True):
     super(ForwardDistance, self).__init__()
     self.lblock = nn.Linear(ldim, aggdim, bias=use_bias)
     self.rblock = nn.Linear(rdim, aggdim, bias=use_bias)
     self.activation = q.name2fn(activation)()
     self.agg = nn.Parameter(torch.FloatTensor(aggdim))
     self.reset_parameters()
Ejemplo n.º 5
0
 def __init__(self,
              indim,
              outdim,
              hdim=None,
              activation="sigmoid",
              use_bias=True):
     super(RNUGate, self).__init__()
     self.indim, self.outdim, self.activation, self.use_bias = indim, outdim, activation, use_bias
     self.activation_fn = q.name2fn(self.activation)()
     self.W = nn.Parameter(torch.FloatTensor(self.indim, self.outdim))
     udim = self.outdim if hdim is None else hdim
     self.U = nn.Parameter(torch.FloatTensor(udim, self.outdim))
     if self.use_bias:
         self.b = nn.Parameter(torch.FloatTensor(1, self.outdim))
     else:
         self.register_parameter("b", None)
     self.reset_parameters()
Ejemplo n.º 6
0
 def __init__(self,
              dim,
              bias=True,
              gate_activation="sigmoid",
              activation="tanh"):
     super(_SRUCell, self).__init__()
     self.indim, self.outdim, self.use_bias = dim, dim, bias
     self.gate_activation, self.activation = gate_activation, activation
     self.hdim = self.outdim
     if self.activation == "crelu":
         self.hdim = self.hdim // 2  # TODO
     self.gates = PackedRNUGates(self.indim,
                                 [(self.outdim, self.gate_activation),
                                  (self.outdim, self.gate_activation),
                                  (self.outdim, None)])
     self.activation_fn = q.name2fn(activation)()
     self.reset_parameters()
Ejemplo n.º 7
0
 def __init__(self, ldim, rdim, aggdim, activation="tanh", use_bias=False):
     super(TrilinearDistance, self).__init__()
     self.block = nn.Bilinear(ldim, rdim, aggdim, bias=use_bias)
     self.activation = q.name2fn(activation)()
     self.agg = nn.Parameter(torch.FloatTensor(aggdim))
     self.reset_parameters()
Ejemplo n.º 8
0
 def __init__(self, indim, outdim, activation="tanh", use_bias=True):
     super(Forward, self).__init__()
     self.lin = nn.Linear(indim, outdim, bias=use_bias)
     self.activation = q.name2fn(activation)()
     self.reset_parameters()