Ejemplo n.º 1
0
    def test_historical_price__margin_adjustment__daily(self):
        # In case if we want only 1 historical bar and the last full bar was more than ~12 days ago, the adjustment of
        # the margin for the "number of days to go back" need to be performed
        self.current_time = str_to_date("2021-05-18 00:00:00.000000",
                                        DateFormat.FULL_ISO)
        actual_bars = self.data_provider.historical_price(
            self.ticker_1, PriceField.ohlcv(), 1, frequency=Frequency.DAILY)
        expected_bars = PricesDataFrame(data=[[25.0, 25.1, 25.2, None, 25.3]],
                                        index=[str_to_date('2021-05-05')],
                                        columns=PriceField.ohlcv())
        assert_dataframes_equal(actual_bars, expected_bars, check_names=False)

        self.current_time = str_to_date("2021-05-27 00:00:00.000000",
                                        DateFormat.FULL_ISO)
        actual_bars = self.data_provider.historical_price(
            self.ticker_1, PriceField.ohlcv(), 1, frequency=Frequency.DAILY)
        assert_dataframes_equal(actual_bars, expected_bars, check_names=False)

        with self.assertRaises(ValueError):
            self.current_time = str_to_date("2021-06-06 00:00:00.000000",
                                            DateFormat.FULL_ISO)
            self.data_provider.historical_price(self.ticker_1,
                                                PriceField.ohlcv(),
                                                1,
                                                frequency=Frequency.DAILY)
Ejemplo n.º 2
0
 def test_drifting_weights_alloc_not_fully_invested(self):
     expected_df = self.alloc_for_not_fully_invested_drift_weights
     _, actual_df = Portfolio.drifting_weights(self.assets_df,
                                               self.weights_not_full_invest)
     assert_dataframes_equal(expected_df,
                             actual_df,
                             absolute_tolerance=1e-06)
Ejemplo n.º 3
0
 def test_asof_multiple_dates_gaps_at_the_end(self):
     actual_result = self.qf_data_array.asof(str_to_date('2018-02-06'))
     expected_result = QFDataFrame(
         index=self.qf_data_array.tickers.to_index(),
         columns=self.qf_data_array.fields.to_index(),
         data=[[16, 17, 18, 19], [12, 13, 14, 15]])
     assert_dataframes_equal(expected_result, actual_result)
Ejemplo n.º 4
0
    def test_concat(self):
        full_df = QFDataFrame(data=self.prices_values,
                              index=self.dates,
                              columns=self.column_names)

        # Concatenate along index (axis = 0)
        number_of_rows = len(full_df)
        half_df = full_df.iloc[:number_of_rows // 2]
        second_half_df = full_df.iloc[number_of_rows // 2:]
        concatenated_df = pd.concat([half_df, second_half_df])

        self.assertEqual(type(concatenated_df), QFDataFrame)
        self.assertEqual({dtype("float64")}, set(concatenated_df.dtypes))
        assert_dataframes_equal(concatenated_df, full_df)

        # Concatenate along columns (axis = 1)
        number_of_columns = full_df.num_of_columns
        half_df = full_df.loc[:, full_df.columns[:number_of_columns // 2]]
        second_half_df = full_df.loc[:,
                                     full_df.columns[number_of_columns // 2:]]
        concatenated_df = pd.concat([half_df, second_half_df], axis=1)

        self.assertEqual(type(concatenated_df), QFDataFrame)
        self.assertEqual({dtype("float64")}, set(concatenated_df.dtypes))
        assert_dataframes_equal(concatenated_df, full_df)
Ejemplo n.º 5
0
    def test_futures_chain_without_adjustment(self):
        timer = SettableTimer(self.end_date)
        self.future_ticker_1.initialize_data_provider(timer,
                                                      self.data_provider)

        futures_chain = FuturesChain(self.future_ticker_1, self.data_provider,
                                     FuturesAdjustmentMethod.NTH_NEAREST)

        # AB2021M is the current specific ticker till 2021-06-14 inclusive, afterwards the AB2021U
        start_date = str_to_date("2021-06-13")
        end_date = str_to_date("2021-06-17")
        fields = PriceField.ohlcv()
        prices = futures_chain.get_price(fields, start_date, end_date,
                                         Frequency.DAILY)

        prices_m_contract = self.data_provider.get_price(
            PortaraTicker("AB2021M", SecurityType.FUTURE, 1), fields,
            start_date, str_to_date("2021-06-14"), Frequency.DAILY)
        prices_u_contract = self.data_provider.get_price(
            PortaraTicker("AB2021U", SecurityType.FUTURE, 1), fields,
            str_to_date("2021-06-15"), end_date, Frequency.DAILY)

        assert_dataframes_equal(prices,
                                concat([prices_m_contract, prices_u_contract]),
                                check_names=False)
Ejemplo n.º 6
0
    def test_asof_nans_when_no_data_available(self):

        actual_result = self.qf_data_array.asof(str_to_date('2018-02-02'))
        expected_result = QFDataFrame(
            index=self.qf_data_array.tickers.to_index(),
            columns=self.qf_data_array.fields.to_index())
        assert_dataframes_equal(expected_result, actual_result)
Ejemplo n.º 7
0
    def test_import_dataframe(self):
        template_file_path = self.template_file_path(SINGLE_SHEET_ONE_DATA_FRAME)

        imported_dataframe = self.xl_importer.import_container(file_path=template_file_path, container_type=QFDataFrame,
                                                               starting_cell='A1', ending_cell='C10')

        assert_dataframes_equal(self.test_data_frame, imported_dataframe)
Ejemplo n.º 8
0
    def test_stepwise_factors_identification(self):
        stepwise_factors_identifier = StepwiseFactorsIdentifier(
            is_intercept=False, epsilon=0.01)
        actual_df = stepwise_factors_identifier.select_best_factors(
            self.regressors_df, self.analysed_tms)
        expected_df = self.regressors_df.loc[:, ['a', 'b']]

        assert_dataframes_equal(expected_df, actual_df)
Ejemplo n.º 9
0
    def test_enet_factors_identification(self):
        enet_factors_identifier = ElasticNetFactorsIdentifier(
            max_number_of_regressors=10)
        actual_df = enet_factors_identifier.select_best_factors(
            self.regressors_df, self.analysed_tms)
        expected_df = self.regressors_df.loc[:, ['a', 'b']]

        assert_dataframes_equal(expected_df, actual_df)
Ejemplo n.º 10
0
    def test_enet_factors_identification_simplified(self):
        enet_factors_identifier = ElasticNetFactorsIdentifierSimplified(
            epsilon=0.05)
        actual_df = enet_factors_identifier.select_best_factors(
            self.regressors_df, self.analysed_tms)
        expected_df = self.regressors_df.loc[:, ['a', 'b']]

        assert_dataframes_equal(expected_df, actual_df)
Ejemplo n.º 11
0
 def test_asof_multiple_dates(self):
     actual_result = self.qf_data_array.asof(
         [str_to_date('2018-02-05'),
          str_to_date('2018-02-04')])
     expected_result = QFDataFrame(
         index=self.qf_data_array.tickers.to_index(),
         columns=self.qf_data_array.fields.to_index(),
         data=[[8, 9, 10, 11], [np.nan, np.nan, np.nan, np.nan]])
     assert_dataframes_equal(expected_result, actual_result)
Ejemplo n.º 12
0
    def test_import_custom_dataframe(self):
        template_file_path = self.template_file_path(SINGLE_SHEET_CUSTOM_INDEX_DATA_FRAME)

        df = QFDataFrame({"Test": [1, 2, 3, 4, 5], "Test2": [10, 20, 30, 40, 50]}, ["A", "B", "C", "D", "E"])
        imported_dataframe = self.xl_importer.import_container(file_path=template_file_path, container_type=QFDataFrame,
                                                               starting_cell='A10', ending_cell='C15',
                                                               include_index=True, include_column_names=True)

        assert_dataframes_equal(df, imported_dataframe)
Ejemplo n.º 13
0
    def test_min_max_normalized(self):
        normalized_prices = [[0.00, 0.00, 0.00, 0.00, 0.00],
                             [0.25, 0.25, 0.25, 0.25, 0.25],
                             [0.50, 0.50, 0.50, 0.50, 0.50],
                             [0.75, 0.75, 0.75, 0.75, 0.75],
                             [1.00, 1.00, 1.00, 1.00, 1.00]]
        expected_dataframe = PricesDataFrame(data=normalized_prices, index=self.dates, columns=self.column_names)

        actual_dataframe = self.test_prices_df.min_max_normalized()

        assert_dataframes_equal(expected_dataframe, actual_dataframe)
 def _assert_bars_for_today_is_correct(self, curr_time_str,
                                       expected_values):
     current_time = str_to_date(curr_time_str, DateFormat.FULL_ISO)
     self.timer.set_current_time(current_time)
     expected_dataframe = QFDataFrame(data=expected_values,
                                      index=self.tickers_index,
                                      columns=self.fields_index)
     actual_dataframe = self.data_handler.get_current_bar(self.tickers)
     assert_dataframes_equal(expected_dataframe,
                             actual_dataframe,
                             check_names=False)
Ejemplo n.º 15
0
    def test_exponential_average(self):
        smoothed_values = [[1.000000, 1.000000, 1.000000, 1.000000, 1.000000],
                           [1.940000, 1.940000, 1.940000, 1.940000, 1.940000],
                           [2.936400, 2.936400, 2.936400, 2.936400, 2.936400],
                           [3.936184, 3.936184, 3.936184, 3.936184, 3.936184],
                           [4.936171, 4.936171, 4.936171, 4.936171, 4.936171]]
        expected_dataframe = PricesDataFrame(data=smoothed_values, index=self.dates, columns=self.column_names)

        actual_dataframe = self.test_prices_df.exponential_average()

        assert_dataframes_equal(expected_dataframe, actual_dataframe)
Ejemplo n.º 16
0
    def test_aggregate_by_year(self):
        dates = pd.DatetimeIndex(['2015-06-01', '2015-12-30', '2016-01-01', '2016-05-01'])
        test_dataframe = SimpleReturnsDataFrame(data=self.simple_returns_values, index=dates)

        expected_aggregated_rets = [[2.000000, 2.000000, 2.000000, 2.000000, 2.000000],
                                    [0.666666, 0.666666, 0.666666, 0.666666, 0.666666]]
        expected_dataframe = SimpleReturnsDataFrame(data=expected_aggregated_rets,
                                                    index=pd.DatetimeIndex(['2015-12-31', '2016-12-31']))

        actual_dataframe = test_dataframe.aggregate_by_year()

        assert_dataframes_equal(expected_dataframe, actual_dataframe)
    def test_get_price_with_single_field(self):
        actual_frame = self.prefetching_data_provider.get_price(
            self.cached_tickers, PriceField.Volume, self.start_date,
            self.end_date, self.frequency)

        expected_frame = PricesDataFrame(data=np.full(
            (len(self.cached_dates_idx), len(self.cached_tickers_idx)), 0),
                                         index=self.cached_dates_idx,
                                         columns=self.cached_tickers_idx)
        tt.assert_dataframes_equal(expected_frame,
                                   actual_frame,
                                   check_index_type=True,
                                   check_column_type=True)
Ejemplo n.º 18
0
    def test_proxy_using_values(self):
        expected_values = [[0.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0],
                           [2.0, 0.0, 2.0, 2.0], [3.0, 3.0, 0.0, 3.0],
                           [4.0, 4.0, 4.0, 4.0], [5.0, 5.0, 5.0, 5.0]]
        expected_columns = ['a', 'c', 'd', 'e']
        expected_dates = self.test_dataframe.index.copy()
        expected_dataframe = SimpleReturnsDataFrame(data=expected_values,
                                                    columns=expected_columns,
                                                    index=expected_dates)
        self.data_cleaner.threshold = 0.2

        actual_dataframe = self.data_cleaner.proxy_using_value(proxy_value=0.0)

        assert_dataframes_equal(expected_dataframe, actual_dataframe)
Ejemplo n.º 19
0
    def test_import_custom_dataframe_shifted(self):
        # This tests issue #79.
        template_file_path = self.template_file_path(SINGLE_SHEET_CUSTOM_INDEX_DATA_FRAME_SHIFTED)

        # With index and column names.
        df = QFDataFrame({"Test": [1, 2, 3, 4, 5], "Test2": [10, 20, 30, 40, 50]}, ["A", "B", "C", "D", "E"])
        imported_dataframe = self.xl_importer.import_container(file_path=template_file_path, container_type=QFDataFrame,
                                                               starting_cell='C10', ending_cell='E15',
                                                               include_index=True, include_column_names=True)

        assert_dataframes_equal(df, imported_dataframe)

        # With index and no column names.
        df = QFDataFrame({0: [1, 2, 3, 4, 5], 1: [10, 20, 30, 40, 50]}, ["A", "B", "C", "D", "E"])
        imported_dataframe = self.xl_importer.import_container(file_path=template_file_path, container_type=QFDataFrame,
                                                               starting_cell='C11', ending_cell='E15',
                                                               include_index=True, include_column_names=False)

        assert_dataframes_equal(df, imported_dataframe)

        # With column names and no index.
        df = QFDataFrame({"Test": [1, 2, 3, 4, 5], "Test2": [10, 20, 30, 40, 50]})
        imported_dataframe = self.xl_importer.import_container(file_path=template_file_path, container_type=QFDataFrame,
                                                               starting_cell='D10', ending_cell='E15',
                                                               include_index=False, include_column_names=True)

        assert_dataframes_equal(df, imported_dataframe)

        # With no column names and no index.
        df = QFDataFrame({0: [1, 2, 3, 4, 5], 1: [10, 20, 30, 40, 50]})
        imported_dataframe = self.xl_importer.import_container(file_path=template_file_path, container_type=QFDataFrame,
                                                               starting_cell='D11', ending_cell='E15',
                                                               include_index=False, include_column_names=False)

        assert_dataframes_equal(df, imported_dataframe)
Ejemplo n.º 20
0
    def test_rolling_time_window(self):
        actual_result = self.test_prices_df.rolling_time_window(window_length=2, step=1, func=lambda x: x.mean())
        expected_values = [[1.5, 1.5, 1.5, 1.5, 1.5],
                           [2.5, 2.5, 2.5, 2.5, 2.5],
                           [3.5, 3.5, 3.5, 3.5, 3.5],
                           [4.5, 4.5, 4.5, 4.5, 4.5]]
        expected_index = self.test_prices_df.index[-4:].copy(deep=True)
        expected_columns = ['a', 'b', 'c', 'd', 'e']
        expected_result = QFDataFrame(expected_values, expected_index, expected_columns)
        assert_dataframes_equal(expected_result, actual_result, absolute_tolerance=1e-20)

        actual_result = self.test_prices_df.rolling_time_window(window_length=2, step=1, func=lambda x: x.mean().mean())
        expected_values = [1.5, 2.5, 3.5, 4.5]
        expected_index = self.test_prices_df.index[-4:].copy(deep=True)
        expected_result = QFSeries(expected_values, expected_index)
        assert_series_equal(expected_result, actual_result, absolute_tolerance=1e-20)
Ejemplo n.º 21
0
    def test_proxy_using_regression(self):
        expected_values = [[np.nan, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0],
                           [2.0, 2.0, 2.0, 2.0], [3.0, 3.0, 3.0, 3.0],
                           [4.0, 4.0, 4.0, 4.0], [5.0, 5.0, 5.0, 5.0]]
        expected_columns = ['a', 'c', 'd', 'e']
        expected_dates = self.test_dataframe.index.copy()
        expected_dataframe = SimpleReturnsDataFrame(data=expected_values,
                                                    columns=expected_columns,
                                                    index=expected_dates)
        self.data_cleaner.threshold = 0.2

        actual_dataframe = self.data_cleaner.proxy_using_regression(
            benchmark_tms=self.test_benchmark,
            columns_type=SimpleReturnsSeries)

        assert_dataframes_equal(expected_dataframe, actual_dataframe)
Ejemplo n.º 22
0
    def test_make_scenarios(self):
        initial_risks = [0.01, 0.02, 0.03]

        scenarios = [
            self.sample_trades_df * 1.0, self.sample_trades_df * -1.0,
            self.sample_trades_df * 2.0
        ]  # type: Sequence[QFDataFrame]

        actual_stats = self.initial_risk_stats_factory.make_stats(
            initial_risks, scenarios)
        expected_stats = QFDataFrame(index=[0.01, 0.02, 0.03],
                                     columns=[
                                         InitialRiskStatsFactory.FAILED,
                                         InitialRiskStatsFactory.SUCCEEDED
                                     ],
                                     data=[[1 / 3, 2 / 3], [0.0, 1 / 3],
                                           [2 / 3, 1 / 3]])

        assert_dataframes_equal(expected_stats, actual_stats)
Ejemplo n.º 23
0
    def test_get_values_for_common_dates(self):
        data = range(6)
        dates1 = DatetimeIndex([
            '2014-12-31', '2015-01-02', '2015-01-04', '2015-01-05',
            '2015-01-09', '2015-01-10'
        ])
        dates2 = DatetimeIndex([
            '2015-02-01', '2015-01-02', '2015-01-03', '2015-01-04',
            '2015-01-05', '2015-01-10'
        ])
        series1 = QFSeries(data=data, index=dates1, name='Series 1')
        series2 = QFSeries(data=data, index=dates2, name='Series 2')
        data_2d = array([data, data]).transpose()
        dataframe1 = QFDataFrame(
            data=data_2d,
            index=dates2,
            columns=['DataFrame Col. A', 'DataFrame Col. B'])

        expected_index = DatetimeIndex(
            ['2015-01-02', '2015-01-04', '2015-01-05', '2015-01-10'])
        expected_data1 = [1, 2, 3, 5]
        expected_series1 = QFSeries(data=expected_data1,
                                    index=expected_index,
                                    name='Series 1')
        expected_data2 = [1, 3, 4, 5]
        expected_series2 = QFSeries(data=expected_data2,
                                    index=expected_index,
                                    name='Series 2')
        expected_dataframe = QFDataFrame(
            data=array([expected_data2, expected_data2]).transpose(),
            index=expected_index,
            columns=['DataFrame Col. A', 'DataFrame Col. B'])

        actual_series1, actual_series2, actual_dataframe = get_values_for_common_dates(
            series1, series2, dataframe1)

        assert_series_equal(expected_series1, actual_series1)
        assert_series_equal(expected_series2, actual_series2)
        assert_dataframes_equal(expected_dataframe, actual_dataframe)
Ejemplo n.º 24
0
    def test_historical_price__single_ticker__multiple_fields__daily(self):
        self.current_time = str_to_date("2021-05-06 00:00:00.000000",
                                        DateFormat.FULL_ISO)

        # Test when the current day does not have the open price
        actual_bars = self.data_provider.historical_price(
            self.ticker_2, PriceField.ohlcv(), 2, frequency=Frequency.DAILY)
        expected_bars = PricesDataFrame(
            data=[[29.0, 29.1, 29.2, 30.0, 29.3],
                  [27.0, 27.1, 27.2, None, 27.3]],
            index=[str_to_date('2021-05-02'),
                   str_to_date('2021-05-05')],
            columns=PriceField.ohlcv())
        assert_dataframes_equal(expected_bars, actual_bars, check_names=False)

        self.current_time = str_to_date("2021-05-06 00:00:00.000000",
                                        DateFormat.FULL_ISO)

        actual_bars = self.data_provider.historical_price(
            self.ticker_2, PriceField.ohlcv(), 3, frequency=Frequency.DAILY)
        expected_bars = PricesDataFrame(data=[[27.0, 27.1, 27.2, 28.0, 27.3],
                                              [29.0, 29.1, 29.2, 30.0, 29.3],
                                              [27.0, 27.1, 27.2, None, 27.3]],
                                        index=[
                                            str_to_date('2021-05-01'),
                                            str_to_date('2021-05-02'),
                                            str_to_date('2021-05-05')
                                        ],
                                        columns=PriceField.ohlcv())
        assert_dataframes_equal(expected_bars, actual_bars, check_names=False)

        # More than 3 bars are not available
        with self.assertRaises(ValueError):
            self.data_provider.historical_price(self.ticker_2,
                                                PriceField.ohlcv(),
                                                4,
                                                frequency=Frequency.DAILY)
Ejemplo n.º 25
0
    def test_prices_to_prices(self):
        expected_dataframe = self.test_prices_df

        actual_dataframe = self.test_prices_df.to_prices()
        assert_dataframes_equal(expected_dataframe, actual_dataframe)
        self.assertEqual({dtype("float64")}, set(actual_dataframe.dtypes))
Ejemplo n.º 26
0
    def test_simple_to_simple_returns(self):
        expected_dataframe = self.test_simple_returns_df

        actual_dataframe = self.test_simple_returns_df.to_simple_returns()
        assert_dataframes_equal(expected_dataframe, actual_dataframe)
Ejemplo n.º 27
0
    def test_prices_to_log_returns(self):
        expected_dataframe = self.test_log_returns_df

        actual_dataframe = self.test_prices_df.to_log_returns()
        assert_dataframes_equal(expected_dataframe, actual_dataframe)
Ejemplo n.º 28
0
    def test_log_to_simple_returns(self):
        expected_dataframe = self.test_simple_returns_df

        actual_dataframe = self.test_log_returns_df.to_simple_returns()
        assert_dataframes_equal(expected_dataframe, actual_dataframe)
        self.assertEqual({dtype("float64")}, set(actual_dataframe.dtypes))