Ejemplo n.º 1
0
    def from_label(cls, label):
        """Return a tensor product of single-qubit operators.

        Args:
            label (string): single-qubit operator string.

        Returns:
            Operator: The N-qubit operator.

        Raises:
            QiskitError: if the label contains invalid characters, or the
                         length of the label is larger than an explicitly
                         specified num_qubits.

        Additional Information:
            The labels correspond to the single-qubit matrices:
            'I': [[1, 0], [0, 1]]
            'X': [[0, 1], [1, 0]]
            'Y': [[0, -1j], [1j, 0]]
            'Z': [[1, 0], [0, -1]]
            'H': [[1, 1], [1, -1]] / sqrt(2)
            'S': [[1, 0], [0 , 1j]]
            'T': [[1, 0], [0, (1+1j) / sqrt(2)]]
            '0': [[1, 0], [0, 0]]
            '1': [[0, 0], [0, 1]]
            '+': [[0.5, 0.5], [0.5 , 0.5]]
            '-': [[0.5, -0.5], [-0.5 , 0.5]]
            'r': [[0.5, -0.5j], [0.5j , 0.5]]
            'l': [[0.5, 0.5j], [-0.5j , 0.5]]
        """
        # Check label is valid
        label_mats = {
            'I': IGate().to_matrix(),
            'X': XGate().to_matrix(),
            'Y': YGate().to_matrix(),
            'Z': ZGate().to_matrix(),
            'H': HGate().to_matrix(),
            'S': SGate().to_matrix(),
            'T': TGate().to_matrix(),
            '0': np.array([[1, 0], [0, 0]], dtype=complex),
            '1': np.array([[0, 0], [0, 1]], dtype=complex),
            '+': np.array([[0.5, 0.5], [0.5, 0.5]], dtype=complex),
            '-': np.array([[0.5, -0.5], [-0.5, 0.5]], dtype=complex),
            'r': np.array([[0.5, -0.5j], [0.5j, 0.5]], dtype=complex),
            'l': np.array([[0.5, 0.5j], [-0.5j, 0.5]], dtype=complex),
        }
        if re.match(r'^[IXYZHST01rl\-+]+$', label) is None:
            raise QiskitError('Label contains invalid characters.')
        # Initialize an identity matrix and apply each gate
        num_qubits = len(label)
        op = Operator(np.eye(2 ** num_qubits, dtype=complex))
        for qubit, char in enumerate(reversed(label)):
            if char != 'I':
                op = op.compose(label_mats[char], qargs=[qubit])
        return op
Ejemplo n.º 2
0
def _standard_gate_instruction(instruction, ignore_phase=True):
    """Temporary function to create Instruction objects from a json string,
    which is necessary for creating a new QuantumError object from deprecated
    json-based input. Note that the type of returned object is different from
    the deprecated standard_gate_instruction.
    TODO: to be removed after deprecation period.

    Args:
        instruction (dict): A qobj instruction.
        ignore_phase (bool): Ignore global phase on unitary matrix in
                             comparison to canonical unitary.

    Returns:
        list: a list of (instructions, qubits) equivalent to in input instruction.
    """
    gate = {
        "id": IGate(),
        "x": XGate(),
        "y": YGate(),
        "z": ZGate(),
        "h": HGate(),
        "s": SGate(),
        "sdg": SdgGate(),
        "t": TGate(),
        "tdg": TdgGate(),
        "cx": CXGate(),
        "cz": CZGate(),
        "swap": SwapGate()
    }

    name = instruction.get("name", None)
    qubits = instruction["qubits"]
    if name in gate:
        return [(gate[name], qubits)]

    if name not in ["mat", "unitary", "kraus"]:
        return [instruction]

    params = instruction["params"]
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                category=DeprecationWarning,
                                module="qiskit.providers.aer.noise.errors.errorutils")

        # Check for single-qubit reset Kraus
        if name == "kraus":
            if len(qubits) == 1:
                superop = SuperOp(Kraus(params))
                # Check if reset to |0>
                reset0 = reset_superop(1)
                if superop == reset0:
                    return [(Reset(), [0])]
                # Check if reset to |1>
                reset1 = reset0.compose(Operator(standard_gate_unitary('x')))
                if superop == reset1:
                    return [(Reset(), [0]), (XGate(), [0])]
            return [instruction]

        # Check single qubit gates
        mat = params[0]
        if len(qubits) == 1:
            # Check clifford gates
            for j in range(24):
                if matrix_equal(
                        mat,
                        single_qubit_clifford_matrix(j),
                        ignore_phase=ignore_phase):
                    return [(gate, [0]) for gate in _CLIFFORD_GATES[j]]
            # Check t gates
            for name in ["t", "tdg"]:
                if matrix_equal(
                        mat,
                        standard_gate_unitary(name),
                        ignore_phase=ignore_phase):
                    return [(gate[name], qubits)]
            # TODO: u1,u2,u3 decomposition
        # Check two qubit gates
        if len(qubits) == 2:
            for name in ["cx", "cz", "swap"]:
                if matrix_equal(
                        mat,
                        standard_gate_unitary(name),
                        ignore_phase=ignore_phase):
                    return [(gate[name], qubits)]
            # Check reversed CX
            if matrix_equal(
                    mat,
                    standard_gate_unitary("cx_10"),
                    ignore_phase=ignore_phase):
                return [(CXGate(), [qubits[1], qubits[0]])]
            # Check 2-qubit Pauli's
            paulis = ["id", "x", "y", "z"]
            for pauli0 in paulis:
                for pauli1 in paulis:
                    pmat = np.kron(
                        standard_gate_unitary(pauli1),
                        standard_gate_unitary(pauli0))
                    if matrix_equal(mat, pmat, ignore_phase=ignore_phase):
                        if pauli0 == "id":
                            return [(gate[pauli1], [qubits[1]])]
                        elif pauli1 == "id":
                            return [(gate[pauli0], [qubits[0]])]
                        else:
                            return [(gate[pauli0], [qubits[0]]), (gate[pauli1], [qubits[1]])]
        # Check three qubit toffoli
        if len(qubits) == 3:
            if matrix_equal(
                    mat,
                    standard_gate_unitary("ccx_012"),
                    ignore_phase=ignore_phase):
                return [(CCXGate(), qubits)]
            if matrix_equal(
                    mat,
                    standard_gate_unitary("ccx_021"),
                    ignore_phase=ignore_phase):
                return [(CCXGate(), [qubits[0], qubits[2], qubits[1]])]
            if matrix_equal(
                    mat,
                    standard_gate_unitary("ccx_120"),
                    ignore_phase=ignore_phase):
                return [(CCXGate(), [qubits[1], qubits[2], qubits[0]])]

    # Else return input in
    return [instruction]
Ejemplo n.º 3
0
equiv_u2.append(RZGate(phi-(pi/2)),[q[0]], 0)
eq_lib.add_equivalence(u2, equiv_u2)

q = QuantumRegister(1, 'q')
equiv_u1 = QuantumCircuit(q)
equiv_u1.append(RZGate(theta), [q[0]], [])
eq_lib.add_equivalence(u1, equiv_u1)

q = QuantumRegister(3, 'q')
equiv_ccx = QuantumCircuit(q)
for inst, qargs, cargs in [
    (HGate(), [q[2]], []),
    (CXGate(), [q[1], q[2]],[]),
    (TdgGate(), [q[2]], []),
    (CXGate(), [q[0],q[2]], []),
    (TGate(), [q[2]], []),
    (CXGate(), [q[1],q[2]], []),
    (TdgGate(), [q[2]], []),
    (CXGate(), [q[0],q[2]], []),
    (CXGate(), [q[0],q[1]], []),
    (TdgGate(), [q[1]], []),
    (CXGate(), [q[0],q[1]], []),
    (TGate(), [q[0]], []),
    (TGate(), [q[1]], []),
    (TGate(), [q[2]], []),
    (HGate(), [q[2]], [])

]:
    equiv_ccx.append(inst, qargs, cargs)
    
eq_lib.add_equivalence(ccx, equiv_ccx)