Ejemplo n.º 1
0
    def sample_counts(self, shots, qargs=None):
        """Sample a dict of qubit measurement outcomes in the computational basis.

        Args:
            shots (int): number of samples to generate.
            qargs (None or list): subsystems to sample measurements for,
                                if None sample measurement of all
                                subsystems (Default: None).

        Returns:
            Counts: sampled counts dictionary.

        Additional Information:

            This function *samples* measurement outcomes using the measure
            :meth:`probabilities` for the current state and `qargs`. It does
            not actually implement the measurement so the current state is
            not modified.

            The seed for random number generator used for sampling can be
            set to a fixed value by using the stats :meth:`seed` method.
        """
        # Sample list of outcomes
        samples = self.sample_memory(shots, qargs=qargs)

        # Combine all samples into a counts dictionary
        inds, counts = np.unique(samples, return_counts=True)
        return Counts(zip(inds, counts))
Ejemplo n.º 2
0
    def get_counts(self, experiment=None):
        """Get the histogram data of an experiment.

        Args:
            experiment (str or QuantumCircuit or Schedule or int or None): the index of the
                experiment, as specified by ``data([experiment])``.

        Returns:
            dict[str:int] or list[dict[str:int]]: a dictionary or a list of
                dictionaries. A dictionary has the counts for each qubit with
                the keys containing a string in binary format and separated
                according to the registers in circuit (e.g. ``0100 1110``).
                The string is little-endian (cr[0] on the right hand side).

        Raises:
            QiskitError: if there are no counts for the experiment.
        """
        if experiment is None:
            exp_keys = range(len(self.results))
        else:
            exp_keys = [experiment]

        dict_list = []
        for key in exp_keys:
            exp = self._get_experiment(key)
            try:
                header = exp.header.to_dict()
            except (AttributeError, QiskitError):  # header is not available
                header = None

            if "counts" in self.data(key).keys():
                if header:
                    counts_header = {
                        k: v
                        for k, v in header.items()
                        if k in {"time_taken", "creg_sizes", "memory_slots"}
                    }
                else:
                    counts_header = {}
                dict_list.append(
                    Counts(self.data(key)["counts"], **counts_header))
            elif "statevector" in self.data(key).keys():
                vec = postprocess.format_statevector(
                    self.data(key)["statevector"])
                dict_list.append(
                    statevector.Statevector(vec).probabilities_dict(
                        decimals=15))
            else:
                raise QiskitError('No counts for experiment "{}"'.format(
                    repr(key)))

        # Return first item of dict_list if size is 1
        if len(dict_list) == 1:
            return dict_list[0]
        else:
            return dict_list