Ejemplo n.º 1
0
    def test_9q_circuit_16q_coupling_sd(self):
        """ 9 qubits in Rueschlikon, considering the direction
         q0[1] → q0[0] → q1[3] → q0[3] ← q1[0] ← q1[1] → q1[2] ← 8
           ↓       ↑      ↓      ↓       ↑       ↓        ↓      ↑
         q0[2] ← q1[4] → 14  ←  13   ←  12   →  11   →   10   ←  9
        """
        cmap16 = FakeRueschlikon().configuration().coupling_map

        qr0 = QuantumRegister(4, 'q0')
        qr1 = QuantumRegister(5, 'q1')
        circuit = QuantumCircuit(qr0, qr1)
        circuit.cx(qr0[1], qr0[2])  # q0[1] -> q0[2]
        circuit.cx(qr0[0], qr1[3])  # q0[0] -> q1[3]
        circuit.cx(qr1[4], qr0[2])  # q1[4] -> q0[2]

        dag = circuit_to_dag(circuit)
        pass_ = CSPLayout(CouplingMap(cmap16), strict_direction=True, seed=self.seed)
        pass_.run(dag)
        layout = pass_.property_set['layout']

        self.assertEqual(layout[qr0[0]], 2)
        self.assertEqual(layout[qr0[1]], 1)
        self.assertEqual(layout[qr0[2]], 0)
        self.assertEqual(layout[qr0[3]], 4)
        self.assertEqual(layout[qr1[0]], 5)
        self.assertEqual(layout[qr1[1]], 6)
        self.assertEqual(layout[qr1[2]], 7)
        self.assertEqual(layout[qr1[3]], 3)
        self.assertEqual(layout[qr1[4]], 15)
        self.assertEqual(pass_.property_set['CSPLayout_stop_reason'], 'solution found')
    def test_3q_circuit_5q_coupling(self):
        """3 qubits in Tenerife, without considering the direction
            qr1
           /  |
        qr0 - qr2 - 3
              |   /
               4
        """
        cmap5 = FakeTenerife().configuration().coupling_map

        qr = QuantumRegister(3, "qr")
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[1], qr[0])  # qr1 -> qr0
        circuit.cx(qr[0], qr[2])  # qr0 -> qr2
        circuit.cx(qr[1], qr[2])  # qr1 -> qr2

        dag = circuit_to_dag(circuit)
        pass_ = CSPLayout(CouplingMap(cmap5),
                          strict_direction=False,
                          seed=self.seed)
        pass_.run(dag)
        layout = pass_.property_set["layout"]

        self.assertEqual(layout[qr[0]], 3)
        self.assertEqual(layout[qr[1]], 2)
        self.assertEqual(layout[qr[2]], 4)
        self.assertEqual(pass_.property_set["CSPLayout_stop_reason"],
                         "solution found")
Ejemplo n.º 3
0
    def test_3q_circuit_5q_coupling_sd(self):
        """ 3 qubits in Tenerife, considering the direction
              qr0
            ↙  ↑
        qr2 ← qr1 ← 3
               ↑  ↙
               4
        """
        cmap5 = FakeTenerife().configuration().coupling_map

        qr = QuantumRegister(3, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[1], qr[0])  # qr1 -> qr0
        circuit.cx(qr[0], qr[2])  # qr0 -> qr2
        circuit.cx(qr[1], qr[2])  # qr1 -> qr2

        dag = circuit_to_dag(circuit)
        pass_ = CSPLayout(CouplingMap(cmap5), strict_direction=True, seed=self.seed)
        pass_.run(dag)
        layout = pass_.property_set['layout']

        self.assertEqual(layout[qr[0]], 1)
        self.assertEqual(layout[qr[1]], 2)
        self.assertEqual(layout[qr[2]], 0)
        self.assertEqual(pass_.property_set['CSPLayout_stop_reason'], 'solution found')
    def test_9q_circuit_16q_coupling(self):
        """9 qubits in Rueschlikon, without considering the direction
        q0[1] - q0[0] - q1[3] - q0[3] - q1[0] - q1[1] - q1[2] - 8
          |       |       |       |       |       |       |     |
        q0[2] - q1[4] -- 14 ---- 13 ---- 12 ---- 11 ---- 10 --- 9
        """
        cmap16 = FakeRueschlikon().configuration().coupling_map

        qr0 = QuantumRegister(4, "q0")
        qr1 = QuantumRegister(5, "q1")
        circuit = QuantumCircuit(qr0, qr1)
        circuit.cx(qr0[1], qr0[2])  # q0[1] -> q0[2]
        circuit.cx(qr0[0], qr1[3])  # q0[0] -> q1[3]
        circuit.cx(qr1[4], qr0[2])  # q1[4] -> q0[2]

        dag = circuit_to_dag(circuit)
        pass_ = CSPLayout(CouplingMap(cmap16),
                          strict_direction=False,
                          seed=self.seed)
        pass_.run(dag)
        layout = pass_.property_set["layout"]

        self.assertEqual(layout[qr0[0]], 9)
        self.assertEqual(layout[qr0[1]], 6)
        self.assertEqual(layout[qr0[2]], 7)
        self.assertEqual(layout[qr0[3]], 5)
        self.assertEqual(layout[qr1[0]], 14)
        self.assertEqual(layout[qr1[1]], 12)
        self.assertEqual(layout[qr1[2]], 1)
        self.assertEqual(layout[qr1[3]], 8)
        self.assertEqual(layout[qr1[4]], 10)
        self.assertEqual(pass_.property_set["CSPLayout_stop_reason"],
                         "solution found")
Ejemplo n.º 5
0
    def test_call_limit(self):
        """Hard to solve situations hit the call limit"""
        dag = TestCSPLayout.create_hard_dag()
        coupling_map = CouplingMap(FakeTokyo().configuration().coupling_map)
        pass_ = CSPLayout(coupling_map, call_limit=1, time_limit=None)

        start = process_time()
        pass_.run(dag)
        runtime = process_time() - start

        self.assertLess(runtime, 1)
        self.assertEqual(pass_.property_set['CSPLayout_stop_reason'], 'call limit reached')
Ejemplo n.º 6
0
    def test_2q_circuit_2q_coupling(self):
        """ A simple example, without considering the direction
          0 - 1
        qr0 - qr1
        """
        qr = QuantumRegister(2, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[1], qr[0])  # qr1 -> qr0

        dag = circuit_to_dag(circuit)
        pass_ = CSPLayout(CouplingMap([[0, 1]]), strict_direction=False, seed=self.seed)
        pass_.run(dag)
        layout = pass_.property_set['layout']

        self.assertEqual(layout[qr[0]], 0)
        self.assertEqual(layout[qr[1]], 1)
        self.assertEqual(pass_.property_set['CSPLayout_stop_reason'], 'solution found')
Ejemplo n.º 7
0
    def test_2q_circuit_2q_coupling_sd(self):
        """ A simple example, considering the direction
         0  -> 1
        qr1 -> qr0
        """
        qr = QuantumRegister(2, 'qr')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[1], qr[0])  # qr1 -> qr0

        dag = circuit_to_dag(circuit)
        pass_ = CSPLayout(CouplingMap([[0, 1]]),
                          strict_direction=True,
                          seed=self.seed)
        pass_.run(dag)
        layout = pass_.property_set['layout']

        self.assertEqual(layout[qr[0]], 1)
        self.assertEqual(layout[qr[1]], 0)
Ejemplo n.º 8
0
    def test_5q_circuit_16q_coupling_no_solution(self):
        """ 5 qubits in Rueschlikon, no solution

          q0[1] ↖     ↗ q0[2]
                 q0[0]
          q0[3] ↙     ↘ q0[4]
        """
        cmap16 = FakeRueschlikon().configuration().coupling_map

        qr = QuantumRegister(5, 'q')
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[0], qr[1])
        circuit.cx(qr[0], qr[2])
        circuit.cx(qr[0], qr[3])
        circuit.cx(qr[0], qr[4])
        dag = circuit_to_dag(circuit)
        pass_ = CSPLayout(CouplingMap(cmap16), seed=self.seed)
        pass_.run(dag)
        layout = pass_.property_set['layout']
        self.assertIsNone(layout)
    def test_seed(self):
        """Different seeds yield different results"""
        seed_1 = 42
        seed_2 = 43

        cmap5 = FakeTenerife().configuration().coupling_map

        qr = QuantumRegister(3, "qr")
        circuit = QuantumCircuit(qr)
        circuit.cx(qr[1], qr[0])  # qr1 -> qr0
        circuit.cx(qr[0], qr[2])  # qr0 -> qr2
        circuit.cx(qr[1], qr[2])  # qr1 -> qr2
        dag = circuit_to_dag(circuit)

        pass_1 = CSPLayout(CouplingMap(cmap5), seed=seed_1)
        pass_1.run(dag)
        layout_1 = pass_1.property_set["layout"]

        pass_2 = CSPLayout(CouplingMap(cmap5), seed=seed_2)
        pass_2.run(dag)
        layout_2 = pass_2.property_set["layout"]

        self.assertNotEqual(layout_1, layout_2)
Ejemplo n.º 10
0
def level_2_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelitites.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=1000, time_limit=10)
    _choose_layout_2 = DenseLayout(coupling_map, backend_properties)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 3. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [
        BarrierBeforeFinalMeasurements(),
        StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)
    ]

    # 5. Unroll to the basis
    _unroll = Unroller(basis_gates)

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(), CommutativeCancellation()]

    # Build pass manager
    pm2 = PassManager()
    if coupling_map:
        pm2.append(_given_layout)
        pm2.append(_choose_layout_1, condition=_choose_layout_condition)
        pm2.append(_choose_layout_2, condition=_choose_layout_condition)
        pm2.append(_embed)
        pm2.append(_unroll3q)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt, do_while=_opt_control)

    return pm2
Ejemplo n.º 11
0
def level_2_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelitites.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=1000, time_limit=10)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=2, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 3. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=5)]
    elif routing_method == 'sabre':
        _swap += [SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [UnrollCustomDefinitions(sel, basis_gates),
                   BasisTranslator(sel, basis_gates)]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(basis_gates), CommutativeCancellation()]

    # 9. Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # Build pass manager
    pm2 = PassManager()
    if coupling_map:
        pm2.append(_given_layout)
        pm2.append(_choose_layout_1, condition=_choose_layout_condition)
        pm2.append(_choose_layout_2, condition=_choose_layout_condition)
        pm2.append(_embed)
        pm2.append(_unroll3q)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt, do_while=_opt_control)
    if scheduling_method:
        pm2.append(_scheduling)

    return pm2
Ejemplo n.º 12
0
def level_2_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by initial layout selection and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, qubits are laid out on the most densely connected subset
    which also exhibits the best gate fidelities.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "dense"
    routing_method = pass_manager_config.routing_method or "stochastic"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()

    # 1. Search for a perfect layout, or choose a dense layout, if no layout given
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    # 1a. If layout_method is not set, first try a trivial layout
    _choose_layout_0 = (
        []
        if pass_manager_config.layout_method
        else [
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
        ]
    )
    # 1b. If a trivial layout wasn't perfect (ie no swaps are needed) then try using
    # CSP layout to find a perfect layout
    _choose_layout_1 = (
        []
        if pass_manager_config.layout_method
        else CSPLayout(coupling_map, call_limit=1000, time_limit=10, seed=seed_transpiler)
    )

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout  is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout is unconditionally set by trivial
        # layout so we need to clear it before contuing.
        if property_set["trivial_layout_score"] is not None:
            if property_set["trivial_layout_score"] != 0:
                property_set["layout"]._wrapped = None
                return True
        return False

    def _csp_not_found_match(property_set):
        # If a layout hasn't been set by the time we run csp we need to run layout
        if property_set["layout"] is None:
            return True
        # if CSP layout stopped for any reason other than solution found we need
        # to run layout since CSP didn't converge.
        if (
            property_set["CSPLayout_stop_reason"] is not None
            and property_set["CSPLayout_stop_reason"] != "solution found"
        ):
            return True
        return False

    # 1c. if CSP layout doesn't converge on a solution use layout_method (dense) to get a layout
    if layout_method == "trivial":
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=2, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 2. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 3. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=5)]
    elif routing_method == "sabre":
        _swap += [SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)]
    elif routing_method == "none":
        _swap += [
            Error(
                msg="No routing method selected, but circuit is not routed to device. "
                "CheckMap Error: {check_map_msg}",
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [UnrollCustomDefinitions(sel, basis_gates), BasisTranslator(sel, basis_gates)]
    elif translation_method == "synthesis":
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates, approximation_degree=approximation_degree),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any bad CX directions
    _direction_check = [CheckGateDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map)]

    # 7. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 8. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _opt = [
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(basis_gates=basis_gates),
    ]

    # 9. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _scheduling = [TimeUnitConversion(instruction_durations)]
    if scheduling_method:
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # 10. Call measure alignment. Should come after scheduling.
    _alignments = [
        ValidatePulseGates(
            granularity=timing_constraints.granularity, min_length=timing_constraints.min_length
        ),
        AlignMeasures(alignment=timing_constraints.acquire_alignment),
    ]

    # Build pass manager
    pm2 = PassManager()
    if coupling_map or initial_layout:
        pm2.append(_given_layout)
        pm2.append(_choose_layout_0, condition=_choose_layout_condition)
        pm2.append(_choose_layout_1, condition=_trivial_not_perfect)
        pm2.append(_choose_layout_2, condition=_csp_not_found_match)
        pm2.append(_embed)
        pm2.append(_unroll3q)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
    pm2.append(_unroll)
    if coupling_map and not coupling_map.is_symmetric:
        pm2.append(_direction_check)
        pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    pm2.append(_scheduling)
    pm2.append(_alignments)
    return pm2
Ejemplo n.º 13
0
def level_2_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 2 pass manager: medium optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules.

    This pass manager applies the user-given initial layout. If none is given, and
    device calibration information is available, the circuit is mapped to the qubits
    with best readouts and to CX gates with highest fidelity. Otherwise, a layout on
    the most densely connected qubits is used.
    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation and redundant
    reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 2 pass manager.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Unroll to the basis first, to prepare for noise-adaptive layout
    _unroll = Unroller(basis_gates)

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout = DenseLayout(coupling_map, backend_properties)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 4. Unroll to 1q or 2q gates, swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements(),
             Unroll3qOrMore(),
             StochasticSwap(coupling_map, trials=20, seed=seed_transpiler),
             Decompose(SwapGate)]

    # 5. Fix any bad CX directions
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 6. Remove zero-state reset
    _reset = RemoveResetInZeroState()

    # 7. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [Optimize1qGates(), CommutativeCancellation()]

    pm2 = PassManager()
    pm2.append(_unroll)
    if coupling_map:
        pm2.append(_given_layout)
        pm2.append(CSPLayout(coupling_map, call_limit=1000, time_limit=10),
                   condition=_choose_layout_condition)
        pm2.append(_choose_layout, condition=_choose_layout_condition)
        pm2.append(_embed)
        pm2.append(_swap_check)
        pm2.append(_swap, condition=_swap_condition)
        if not coupling_map.is_symmetric:
            pm2.append(_direction_check)
            pm2.append(_direction, condition=_direction_condition)
    pm2.append(_reset)
    pm2.append(_depth_check + _opt, do_while=_opt_control)

    return pm2
Ejemplo n.º 14
0
def level_3_with_contant_pure(pass_manager_config: PassManagerConfig) -> PassManager:
    """
    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Unroll to the basis first, to prepare for noise-adaptive layout
    _unroll = Unroller(basis_gates + ['annotation'])

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=10000, time_limit=60)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 4. Unroll to 1q or 2q gates, swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements(), Unroll3qOrMore()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [RemoveResetInZeroState(),
            Collect2qBlocks(), ConsolidateBlocks(),
            Unroller(basis_gates),  # unroll unitaries
            Optimize1qGates(basis_gates), CommutativeCancellation(),
            OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # Build pass manager
    pm = PassManager()
    pm.append(ConstantsStateOptimization())
    pm.append(_unroll)
    if coupling_map:
        pm.append(_given_layout)
        pm.append(_choose_layout_1, condition=_choose_layout_condition)
        pm.append(_choose_layout_2, condition=_choose_layout_condition)
        pm.append(_embed)
        pm.append(_swap_check)
        pm.append(_swap, condition=_swap_condition)
    pm.append(ConstantsStateOptimization())
    pm.append([Unroller(basis_gates+['swap', 'aswap', 'annotation']),
               Optimize1qGates(), PureStateOnU()])
    pm.append(_depth_check + _opt, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        pm.append(_direction_check)
        pm.append(_direction, condition=_direction_condition)
    return pm
Ejemplo n.º 15
0
def noise_pass_manager(basis_gates=None,
                       initial_layout=None,
                       coupling_map=None,
                       layout_method=None,
                       translation_method=None,
                       seed_transpiler=None,
                       backend=None,
                       routing_method=None,
                       backend_properties=None,
                       transform=False,
                       readout=True,
                       alpha=0.5,
                       next_gates=5,
                       front=True) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        backend (BaseBackend)

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    if basis_gates is None:
        if getattr(backend, 'configuration', None):
            basis_gates = getattr(backend.configuration(), 'basis_gates', None)
        # basis_gates could be None, or a list of basis, e.g. ['u3', 'cx']
    if isinstance(basis_gates, list) and all(
            isinstance(i, str) for i in basis_gates):
        basis_gates = basis_gates
    if basis_gates is None:
        basis_gates = ['u3', 'cx', 'id']
    # basis_gates = ['u3', 'cx', 'id']
    backend = backend
    if backend is None or backend.configuration().simulator:
        if backend_properties is None or coupling_map is None:
            raise QiskitError(
                "Backend is simulator or not specified, provide backend properties and coupling map."
            )
        coupling_map = coupling_map
        backend_properties = backend_properties
    else:
        if backend_properties is not None or coupling_map is not None:
            warnings.warn(
                "A backend was provide, ignoring backend properties and coupling map",
                UserWarning)
        coupling_map = backend.configuration().coupling_map
        backend_properties = backend.properties()

    if isinstance(coupling_map, list):
        coupling_map = CouplingMap(couplinglist=coupling_map)

    initial_layout = initial_layout
    layout_method = layout_method or 'dense'
    routing_method = routing_method or 'stochastic'
    translation_method = translation_method or 'translator'
    seed_transpiler = seed_transpiler

    # 1. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=10000, time_limit=60)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map,
                                       max_iterations=4,
                                       seed=seed_transpiler)
    elif layout_method == 'chain':
        _choose_layout_2 = ChainLayout(coupling_map,
                                       backend_properties,
                                       readout=readout)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)
        ]
    elif routing_method == 'noise_adaptive':
        _swap += [
            NoiseAdaptiveSwap(coupling_map,
                              backend_properties,
                              invert_score=invert_score,
                              swap_score=swap_score,
                              readout=readout,
                              alpha=alpha,
                              next_gates=next_gates,
                              front=front)
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes continguous blocks.
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(basis_gates),
        Optimize1qGates(basis_gates),
        CommutativeCancellation(),
    ]

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    if transform:
        _transform = TransformCxCascade()
        pm3.append(_transform)
    pm3.append(_reset + _meas)
    if coupling_map:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_1, condition=_choose_layout_condition)
        pm3.append(_choose_layout_2, condition=_choose_layout_condition)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
    pm3.append(_reset)

    return pm3
Ejemplo n.º 16
0
def level_3_pass_manager(
        pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = [] if pass_manager_config.layout_method \
        else CSPLayout(coupling_map, call_limit=10000, time_limit=60, seed=seed_transpiler)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map,
                                       max_iterations=4,
                                       seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)
        ]
    elif routing_method == 'none':
        _swap += [
            Error(
                msg=
                'No routing method selected, but circuit is not routed to device. '
                'CheckMap Error: {check_map_msg}',
                action='raise')
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes contiguous blocks.
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(basis_gates),
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(),
    ]

    # Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    pm3.append(_reset + _meas)
    if coupling_map or initial_layout:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_1, condition=_choose_layout_condition)
        pm3.append(_choose_layout_2, condition=_choose_layout_condition)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
    pm3.append(_reset)
    if scheduling_method:
        pm3.append(_scheduling)

    return pm3
Ejemplo n.º 17
0
def level_3_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.
    """
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Unroll to the basis first, to prepare for noise-adaptive layout
    _unroll = Unroller(basis_gates)

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=10000, time_limit=60)
    # TODO: benchmark DenseLayout vs. NoiseAdaptiveLayout in terms of noise aware mapping
    _choose_layout_2 = DenseLayout(coupling_map, backend_properties)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 4. Unroll to 1q or 2q gates, swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements(),
             Unroll3qOrMore(),
             StochasticSwap(coupling_map, trials=20, seed=seed_transpiler)]

    # 5. 1q rotation merge and commutative cancellation iteratively until no more change in depth
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _opt = [RemoveResetInZeroState(),
            Collect2qBlocks(), ConsolidateBlocks(),
            Unroller(basis_gates),  # unroll unitaries
            Optimize1qGates(), CommutativeCancellation(),
            OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll)
    if coupling_map:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_1, condition=_choose_layout_condition)
        pm3.append(_choose_layout_2, condition=_choose_layout_condition)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_depth_check + _opt, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)

    return pm3
Ejemplo n.º 18
0
def level_3_pass_manager(pass_manager_config: PassManagerConfig) -> PassManager:
    """Level 3 pass manager: heavy optimization by noise adaptive qubit mapping and
    gate cancellation using commutativity rules and unitary synthesis.

    This pass manager applies the user-given initial layout. If none is given, a search
    for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
    If no such layout is found, and device calibration information is available, the
    circuit is mapped to the qubits with best readouts and to CX gates with highest fidelity.

    The pass manager then transforms the circuit to match the coupling constraints.
    It is then unrolled to the basis, and any flipped cx directions are fixed.
    Finally, optimizations in the form of commutative gate cancellation, resynthesis
    of two-qubit unitary blocks, and redundant reset removal are performed.

    Note:
        In simulators where ``coupling_map=None``, only the unrolling and
        optimization stages are done.

    Args:
        pass_manager_config: configuration of the pass manager.

    Returns:
        a level 3 pass manager.

    Raises:
        TranspilerError: if the passmanager config is invalid.
    """
    basis_gates = pass_manager_config.basis_gates
    inst_map = pass_manager_config.inst_map
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or "sabre"
    routing_method = pass_manager_config.routing_method or "sabre"
    translation_method = pass_manager_config.translation_method or "translator"
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties
    approximation_degree = pass_manager_config.approximation_degree
    unitary_synthesis_method = pass_manager_config.unitary_synthesis_method
    timing_constraints = pass_manager_config.timing_constraints or TimingConstraints()
    unitary_synthesis_plugin_config = pass_manager_config.unitary_synthesis_plugin_config
    target = pass_manager_config.target

    # 1. Unroll to 1q or 2q gates
    _unroll3q = [
        # Use unitary synthesis for basis aware decomposition of UnitaryGates
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
            min_qubits=3,
        ),
        Unroll3qOrMore(),
    ]

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        # layout hasn't been set yet
        return not property_set["layout"]

    def _csp_not_found_match(property_set):
        # If a layout hasn't been set by the time we run csp we need to run layout
        if property_set["layout"] is None:
            return True
        # if CSP layout stopped for any reason other than solution found we need
        # to run layout since CSP didn't converge.
        if (
            property_set["CSPLayout_stop_reason"] is not None
            and property_set["CSPLayout_stop_reason"] != "solution found"
        ):
            return True
        return False

    # 2a. If layout method is not set, first try a trivial layout
    _choose_layout_0 = (
        []
        if pass_manager_config.layout_method
        else [
            TrivialLayout(coupling_map),
            Layout2qDistance(coupling_map, property_name="trivial_layout_score"),
        ]
    )
    # 2b. If trivial layout wasn't perfect (ie no swaps are needed) then try
    # using CSP layout to find a perfect layout
    _choose_layout_1 = (
        []
        if pass_manager_config.layout_method
        else CSPLayout(coupling_map, call_limit=10000, time_limit=60, seed=seed_transpiler)
    )

    def _trivial_not_perfect(property_set):
        # Verify that a trivial layout  is perfect. If trivial_layout_score > 0
        # the layout is not perfect. The layout property set is unconditionally
        # set by trivial layout so we clear that before running CSP
        if property_set["trivial_layout_score"] is not None:
            if property_set["trivial_layout_score"] != 0:
                return True
        return False

    # 2c. if CSP didn't converge on a solution use layout_method (dense).
    if layout_method == "trivial":
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == "dense":
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == "noise_adaptive":
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == "sabre":
        _choose_layout_2 = SabreLayout(coupling_map, max_iterations=4, seed=seed_transpiler)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [FullAncillaAllocation(coupling_map), EnlargeWithAncilla(), ApplyLayout()]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set["is_swap_mapped"]

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == "basic":
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == "stochastic":
        _swap += [StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)]
    elif routing_method == "lookahead":
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == "sabre":
        _swap += [SabreSwap(coupling_map, heuristic="decay", seed=seed_transpiler)]
    elif routing_method == "none":
        _swap += [
            Error(
                msg=(
                    "No routing method selected, but circuit is not routed to device. "
                    "CheckMap Error: {check_map_msg}"
                ),
                action="raise",
            )
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == "unroller":
        _unroll = [Unroller(basis_gates)]
    elif translation_method == "translator":
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel

        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                plugin_config=unitary_synthesis_plugin_config,
                method=unitary_synthesis_method,
            ),
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates, target),
        ]
    elif translation_method == "synthesis":
        _unroll = [
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
                min_qubits=3,
            ),
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(
                basis_gates,
                approximation_degree=approximation_degree,
                coupling_map=coupling_map,
                backend_props=backend_properties,
                method=unitary_synthesis_method,
                plugin_config=unitary_synthesis_plugin_config,
            ),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." % translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckGateDirection(coupling_map, target)]

    def _direction_condition(property_set):
        return not property_set["is_direction_mapped"]

    _direction = [GateDirection(coupling_map, target)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes contiguous blocks.
    _depth_check = [Depth(), FixedPoint("depth")]

    def _opt_control(property_set):
        return not property_set["depth_fixed_point"]

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    _opt = [
        Collect2qBlocks(),
        ConsolidateBlocks(basis_gates=basis_gates),
        UnitarySynthesis(
            basis_gates,
            approximation_degree=approximation_degree,
            coupling_map=coupling_map,
            backend_props=backend_properties,
            method=unitary_synthesis_method,
            plugin_config=unitary_synthesis_plugin_config,
        ),
        Optimize1qGatesDecomposition(basis_gates),
        CommutativeCancellation(),
    ]

    # 9. Unify all durations (either SI, or convert to dt if known)
    # Schedule the circuit only when scheduling_method is supplied
    _time_unit_setup = [ContainsInstruction("delay")]
    _time_unit_conversion = [TimeUnitConversion(instruction_durations)]

    def _contains_delay(property_set):
        return property_set["contains_delay"]

    _scheduling = []
    if scheduling_method:
        _scheduling += _time_unit_conversion
        if scheduling_method in {"alap", "as_late_as_possible"}:
            _scheduling += [ALAPSchedule(instruction_durations)]
        elif scheduling_method in {"asap", "as_soon_as_possible"}:
            _scheduling += [ASAPSchedule(instruction_durations)]
        else:
            raise TranspilerError("Invalid scheduling method %s." % scheduling_method)

    # 10. Call measure alignment. Should come after scheduling.
    if (
        timing_constraints.granularity != 1
        or timing_constraints.min_length != 1
        or timing_constraints.acquire_alignment != 1
    ):
        _alignments = [
            ValidatePulseGates(
                granularity=timing_constraints.granularity, min_length=timing_constraints.min_length
            ),
            AlignMeasures(alignment=timing_constraints.acquire_alignment),
        ]
    else:
        _alignments = []

    # Build pass manager
    pm3 = PassManager()
    pm3.append(_unroll3q)
    pm3.append(_reset + _meas)
    if coupling_map or initial_layout:
        pm3.append(_given_layout)
        pm3.append(_choose_layout_0, condition=_choose_layout_condition)
        pm3.append(_choose_layout_1, condition=_trivial_not_perfect)
        pm3.append(_choose_layout_2, condition=_csp_not_found_match)
        pm3.append(_embed)
        pm3.append(_swap_check)
        pm3.append(_swap, condition=_swap_condition)
    pm3.append(_unroll)
    if (coupling_map and not coupling_map.is_symmetric) or (
        target is not None and target.get_non_global_operation_names(strict_direction=True)
    ):
        pm3.append(_direction_check)
        pm3.append(_direction, condition=_direction_condition)
        pm3.append(_reset)
        # For transpiling to a target we need to run GateDirection in the
        # optimization loop to correct for incorrect directions that might be
        # inserted by UnitarySynthesis which is direction aware but only via
        # the coupling map which with a target doesn't give a full picture
        if target is not None:
            pm3.append(_depth_check + _opt + _unroll + _direction, do_while=_opt_control)
        else:
            pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    else:
        pm3.append(_reset)
        pm3.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if inst_map and inst_map.has_custom_gate():
        pm3.append(PulseGates(inst_map=inst_map))
    if scheduling_method:
        pm3.append(_scheduling)
    elif instruction_durations:
        pm3.append(_time_unit_setup)
        pm3.append(_time_unit_conversion, condition=_contains_delay)
    pm3.append(_alignments)

    return pm3
Ejemplo n.º 19
0
def multi_pass_manager(pass_manager_config: PassManagerConfig,
                       crosstalk_prop=None) -> PassManager:
    basis_gates = pass_manager_config.basis_gates
    coupling_map = pass_manager_config.coupling_map
    initial_layout = pass_manager_config.initial_layout
    layout_method = pass_manager_config.layout_method or 'dense'
    routing_method = pass_manager_config.routing_method or 'stochastic'
    translation_method = pass_manager_config.translation_method or 'translator'
    scheduling_method = pass_manager_config.scheduling_method
    instruction_durations = pass_manager_config.instruction_durations
    seed_transpiler = pass_manager_config.seed_transpiler
    backend_properties = pass_manager_config.backend_properties

    # 1. Unroll to 1q or 2q gates
    _unroll3q = Unroll3qOrMore()

    # 2. Layout on good qubits if calibration info available, otherwise on dense links
    _given_layout = SetLayout(initial_layout)

    def _choose_layout_condition(property_set):
        return not property_set['layout']

    _choose_layout_1 = CSPLayout(coupling_map, call_limit=10000, time_limit=60)
    if layout_method == 'trivial':
        _choose_layout_2 = TrivialLayout(coupling_map)
    elif layout_method == 'dense':
        _choose_layout_2 = DenseLayout(coupling_map, backend_properties)
    elif layout_method == 'noise_adaptive':
        _choose_layout_2 = NoiseAdaptiveLayout(backend_properties)
    elif layout_method == 'sabre':
        _choose_layout_2 = SabreLayout(coupling_map,
                                       max_iterations=4,
                                       seed=seed_transpiler)
    elif layout_method == 'xtalk_adaptive':
        _choose_layout_2 = CrosstalkAdaptiveMultiLayout(
            backend_properties, crosstalk_prop=crosstalk_prop)
    # elif layout_method == 'xtalk_sabre':
    #     _choose_layout_2 = CrosstalkSabreLayout(coupling_map, max_iterations=4, seed=seed_transpiler, crosstalk_prop=crosstalk_prop)
    else:
        raise TranspilerError("Invalid layout method %s." % layout_method)

    # 3. Extend dag/layout with ancillas using the full coupling map
    _embed = [
        FullAncillaAllocation(coupling_map),
        EnlargeWithAncilla(),
        ApplyLayout()
    ]

    # 4. Swap to fit the coupling map
    _swap_check = CheckMap(coupling_map)

    def _swap_condition(property_set):
        return not property_set['is_swap_mapped']

    _swap = [BarrierBeforeFinalMeasurements()]
    if routing_method == 'basic':
        _swap += [BasicSwap(coupling_map)]
    elif routing_method == 'stochastic':
        _swap += [
            StochasticSwap(coupling_map, trials=200, seed=seed_transpiler)
        ]
    elif routing_method == 'lookahead':
        _swap += [LookaheadSwap(coupling_map, search_depth=5, search_width=6)]
    elif routing_method == 'sabre':
        _swap += [
            SabreSwap(coupling_map, heuristic='decay', seed=seed_transpiler)
        ]
    else:
        raise TranspilerError("Invalid routing method %s." % routing_method)

    # 5. Unroll to the basis
    if translation_method == 'unroller':
        _unroll = [Unroller(basis_gates)]
    elif translation_method == 'translator':
        from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel
        _unroll = [
            UnrollCustomDefinitions(sel, basis_gates),
            BasisTranslator(sel, basis_gates)
        ]
    elif translation_method == 'synthesis':
        _unroll = [
            Unroll3qOrMore(),
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
        ]
    else:
        raise TranspilerError("Invalid translation method %s." %
                              translation_method)

    # 6. Fix any CX direction mismatch
    _direction_check = [CheckCXDirection(coupling_map)]

    def _direction_condition(property_set):
        return not property_set['is_direction_mapped']

    _direction = [CXDirection(coupling_map)]

    # 8. Optimize iteratively until no more change in depth. Removes useless gates
    # after reset and before measure, commutes gates and optimizes continguous blocks.
    _depth_check = [Depth(), FixedPoint('depth')]

    def _opt_control(property_set):
        return not property_set['depth_fixed_point']

    _reset = [RemoveResetInZeroState()]

    _meas = [OptimizeSwapBeforeMeasure(), RemoveDiagonalGatesBeforeMeasure()]

    if basis_gates and ('u1' in basis_gates or 'u2' in basis_gates
                        or 'u3' in basis_gates):
        _opt = [
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
            Optimize1qGates(basis_gates),
            CommutativeCancellation(),
        ]
    else:
        _opt = [
            Collect2qBlocks(),
            ConsolidateBlocks(basis_gates=basis_gates),
            UnitarySynthesis(basis_gates),
            Optimize1qGatesDecomposition(basis_gates),
            CommutativeCancellation(),
        ]

    # Schedule the circuit only when scheduling_method is supplied
    if scheduling_method:
        _scheduling = [TimeUnitAnalysis(instruction_durations)]
        if scheduling_method in {'alap', 'as_late_as_possible'}:
            _scheduling += [MultiALAPSchedule(instruction_durations)]
        elif scheduling_method in {'asap', 'as_soon_as_possible'}:
            # _scheduling += [ASAPSchedule(instruction_durations)]
            """FIXME"""
            raise TranspilerError(
                "Sorry now this method is not available: %s." %
                scheduling_method)
        else:
            raise TranspilerError("Invalid scheduling method %s." %
                                  scheduling_method)

    # Build pass manager
    multi_pm = PassManager()
    multi_pm.append(_unroll3q)
    multi_pm.append(_reset + _meas)
    if coupling_map or initial_layout:
        multi_pm.append(_given_layout)
        multi_pm.append(_choose_layout_1, condition=_choose_layout_condition)
        multi_pm.append(_choose_layout_2, condition=_choose_layout_condition)
        multi_pm.append(_embed)
        multi_pm.append(_swap_check)
        multi_pm.append(_swap, condition=_swap_condition)
    multi_pm.append(_unroll)
    multi_pm.append(_depth_check + _opt + _unroll, do_while=_opt_control)
    if coupling_map and not coupling_map.is_symmetric:
        multi_pm.append(_direction_check)
        multi_pm.append(_direction, condition=_direction_condition)
    multi_pm.append(_reset)
    if scheduling_method:
        multi_pm.append(_scheduling)

    return multi_pm