class TestInitialStateHartreeFock(QiskitAquaChemistryTestCase):

    def test_qubits_4_jw_h2(self):
        self.hf = HartreeFock(4, 4, 2, 'jordan_wigner', False)
        cct = self.hf.construct_circuit('vector')
        np.testing.assert_array_equal(cct, [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
                                            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

    def test_qubits_4_py_h2(self):
        self.hf = HartreeFock(4, 4, 2, 'parity', False)
        cct = self.hf.construct_circuit('vector')
        np.testing.assert_array_equal(cct, [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0,
                                            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

    def test_qubits_4_bk_h2(self):
        self.hf = HartreeFock(4, 4, 2, 'bravyi_kitaev', False)
        cct = self.hf.construct_circuit('vector')
        np.testing.assert_array_equal(cct, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
                                            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

    def test_qubits_2_py_h2(self):
        self.hf = HartreeFock(2, 4, 2, 'parity', True)
        cct = self.hf.construct_circuit('vector')
        np.testing.assert_array_equal(cct, [0.0, 1.0, 0.0, 0.0])

    def test_qubits_2_py_h2_cct(self):
        self.hf = HartreeFock(2, 4, 2, 'parity', True)
        cct = self.hf.construct_circuit('circuit')
        self.assertEqual(cct.qasm(), 'OPENQASM 2.0;\ninclude "qelib1.inc";\nqreg q[2];\n'
                                     'u3(3.14159265358979,0.0,3.14159265358979) q[0];\n')
Ejemplo n.º 2
0
 def test_qubits_6_py_lih_cct(self):
     self.hf = HartreeFock(6, 10, 2, 'parity', True, [1, 2])
     cct = self.hf.construct_circuit('circuit')
     self.assertEqual(
         cct.qasm(), 'OPENQASM 2.0;\ninclude "qelib1.inc";\nqreg q[6];\n'
         'u3(3.14159265358979,0.0,3.14159265358979) q[0];\n'
         'u3(3.14159265358979,0.0,3.14159265358979) q[1];\n')
Ejemplo n.º 3
0
 def test_qubits_4_bk_h2(self):
     self.hf = HartreeFock(4, 4, 2, 'bravyi_kitaev', False)
     cct = self.hf.construct_circuit('vector')
     np.testing.assert_array_equal(cct, [
         0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
         0.0, 0.0, 0.0
     ])
Ejemplo n.º 4
0
 def test_qubits_4_jw_h2(self):
     self.hf = HartreeFock(4, 4, 2, 'jordan_wigner', False)
     cct = self.hf.construct_circuit('vector')
     np.testing.assert_array_equal(cct, [
         0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
         0.0, 0.0, 0.0
     ])
Ejemplo n.º 5
0
def qc_solver(h_qop, num_spin_orbitals, num_particles, map_type, \
        qubit_reduction, aux_qops=None):
    # backends = Aer.backends()
    backends = IBMQ.backends(simulator=False)
    print(backends)
    # backend = IBMQ.get_backend('ibmq_qasm_simulator')
    # backend = IBMQ.get_backend('ibmq_16_melbourne')

    # backend = Aer.get_backend('statevector_simulator')
    backend = Aer.get_backend('qasm_simulator')

    # setup COBYLA optimizer
    max_eval = 1000
    cobyla = COBYLA(maxiter=max_eval)
    # setup hartreeFock state
    hf_state = HartreeFock(h_qop.num_qubits, num_spin_orbitals, num_particles,
            map_type, qubit_reduction)
    # setup UCCSD variational form
    var_form = UCCSD(h_qop.num_qubits, depth=1,
            num_orbitals=num_spin_orbitals, num_particles=num_particles,
            active_occupied=[0], active_unoccupied=[0],
            initial_state=hf_state, qubit_mapping=map_type,
            two_qubit_reduction=qubit_reduction, num_time_slices=1)

    # setup VQE
    vqe = VQE(h_qop, var_form, cobyla, operator_mode='matrix', \
            aux_operators=aux_qops)
    quantum_instance = QuantumInstance(backend=backend, shots=1024,
            max_credits=10)
    ret = vqe.run(quantum_instance)
    print(ret['aux_ops'])
    print('The computed ground state energy is: {:.12f}'.format(\
            ret['eigvals'][0]))
Ejemplo n.º 6
0
    def test_iqpe(self, distance):
        self.algorithm = 'IQPE'
        self.log.debug('Testing End-to-End with IQPE on H2 with '
                       'inter-atomic distance {}.'.format(distance))
        try:
            driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 {}'.format(distance),
                                 unit=UnitsType.ANGSTROM,
                                 charge=0,
                                 spin=0,
                                 basis='sto3g')
        except QiskitChemistryError:
            self.skipTest('PYSCF driver does not appear to be installed')
        self.molecule = driver.run()
        qubit_mapping = 'parity'
        fer_op = FermionicOperator(h1=self.molecule.one_body_integrals, h2=self.molecule.two_body_integrals)
        self.qubit_op = fer_op.mapping(map_type=qubit_mapping, threshold=1e-10).two_qubit_reduced_operator(2)

        exact_eigensolver = ExactEigensolver(self.qubit_op, k=1)
        results = exact_eigensolver.run()
        self.reference_energy = results['energy']
        self.log.debug('The exact ground state energy is: {}'.format(results['energy']))

        num_particles = self.molecule.num_alpha + self.molecule.num_beta
        two_qubit_reduction = True
        num_orbitals = self.qubit_op.num_qubits + (2 if two_qubit_reduction else 0)

        num_time_slices = 50
        num_iterations = 12
        state_in = HartreeFock(self.qubit_op.num_qubits, num_orbitals,
                               num_particles, qubit_mapping, two_qubit_reduction)
        iqpe = IQPE(self.qubit_op, state_in, num_time_slices, num_iterations,
                    paulis_grouping='random', expansion_mode='suzuki', expansion_order=2,
                    shallow_circuit_concat=True)
        backend = qiskit.Aer.get_backend('qasm_simulator')
        quantum_instance = QuantumInstance(backend, shots=100, pass_manager=PassManager())

        result = iqpe.run(quantum_instance)

        self.log.debug('top result str label:     {}'.format(result['top_measurement_label']))
        self.log.debug('top result in decimal:    {}'.format(result['top_measurement_decimal']))
        self.log.debug('stretch:                  {}'.format(result['stretch']))
        self.log.debug('translation:              {}'.format(result['translation']))
        self.log.debug('final energy from QPE:    {}'.format(result['energy']))
        self.log.debug('reference energy:         {}'.format(self.reference_energy))
        self.log.debug('ref energy (transformed): {}'.format(
            (self.reference_energy + result['translation']) * result['stretch'])
        )
        self.log.debug('ref binary str label:     {}'.format(decimal_to_binary(
            (self.reference_energy + result['translation']) * result['stretch'],
            max_num_digits=num_iterations + 3,
            fractional_part_only=True
        )))

        np.testing.assert_approx_equal(result['energy'], self.reference_energy, significant=2)
Ejemplo n.º 7
0
ret = exact_eigensolver.run()
print('The computed energy is: {:.12f}'.format(ret['eigvals'][0].real))
print('The total ground state energy is: {:.12f}'.format(
    ret['eigvals'][0].real + energy_shift + nuclear_repulsion_energy))

from qiskit import IBMQ

IBMQ.load_accounts()

backend = Aer.get_backend('statevector_simulator')
# setup COBYLA optimizer
max_eval = 200
cobyla = COBYLA(maxiter=max_eval)

# setup HartreeFock state
HF_state = HartreeFock(qubitOp.num_qubits, num_spin_orbitals, num_particles,
                       map_type, qubit_reduction)

# setup UCCSD variational form
var_form = UCCSD(qubitOp.num_qubits,
                 depth=1,
                 num_orbitals=num_spin_orbitals,
                 num_particles=num_particles,
                 active_occupied=[0],
                 active_unoccupied=[0, 1],
                 initial_state=HF_state,
                 qubit_mapping=map_type,
                 two_qubit_reduction=qubit_reduction,
                 num_time_slices=1)

# setup VQE
vqe = VQE(qubitOp, var_form, cobyla, 'matrix')
 def test_qubits_2_py_h2(self):
     self.hf = HartreeFock(2, 4, 2, 'parity', True)
     cct = self.hf.construct_circuit('vector')
     np.testing.assert_array_equal(cct, [0.0, 1.0, 0.0, 0.0])
Ejemplo n.º 9
0
for basis in bases:
    for qm_name, qubit_mapping in qubit_mappings.items():
        for var_form_name, var_form_class in var_forms.items():
            for mol_name, molecule_str in molecules.items():
                driver = PySCFDriver(molecule_str, basis=basis)
                mol = driver.run()
                n_qubits = mol.one_body_integrals.shape[0]
                n_electrons = mol.num_alpha + mol.num_beta - mol.molecular_charge
                ferOp = FermionicOperator(h1=mol.one_body_integrals,
                                          h2=mol.two_body_integrals)
                qubitOp = ferOp.mapping(map_type=qubit_mapping, threshold=1e-8)
                qubitOp.chop(1e-10)
                initial_hf = HartreeFock(num_qubits=n_qubits,
                                         num_orbitals=n_qubits,
                                         qubit_mapping=qubit_mapping,
                                         two_qubit_reduction=False,
                                         num_particles=n_electrons)
                var_form = UCCSD(num_qubits=n_qubits,
                                 num_orbitals=n_qubits,
                                 num_particles=n_electrons,
                                 depth=1,
                                 initial_state=initial_hf,
                                 qubit_mapping=qubit_mapping)
                number_amplitudes = len(var_form._single_excitations) + len(
                    var_form._double_excitations)
                amplitudes = [1e-4] * number_amplitudes
                circuit = var_form.construct_circuit(amplitudes)
                qasm = circuit.qasm()
                filename = '{m}_{v}_{q}_{b}.qasm'.format(m=mol_name,
                                                         v=var_form_name,
    def test_qpe(self, distance):
        self.algorithm = 'QPE'
        self.log.debug(
            'Testing End-to-End with QPE on H2 with inter-atomic distance {}.'.
            format(distance))
        cfg_mgr = ConfigurationManager()
        pyscf_cfg = OrderedDict([('atom',
                                  'H .0 .0 .0; H .0 .0 {}'.format(distance)),
                                 ('unit', 'Angstrom'), ('charge', 0),
                                 ('spin', 0), ('basis', 'sto3g')])
        section = {}
        section['properties'] = pyscf_cfg
        try:
            driver = cfg_mgr.get_driver_instance('PYSCF')
        except QiskitChemistryError:
            self.skipTest('PYSCF driver does not appear to be installed')

        self.molecule = driver.run(section)
        qubit_mapping = 'parity'
        fer_op = FermionicOperator(h1=self.molecule.one_body_integrals,
                                   h2=self.molecule.two_body_integrals)
        self.qubit_op = fer_op.mapping(
            map_type=qubit_mapping,
            threshold=1e-10).two_qubit_reduced_operator(2)

        exact_eigensolver = ExactEigensolver(self.qubit_op, k=1)
        results = exact_eigensolver.run()
        self.reference_energy = results['energy']
        self.log.debug('The exact ground state energy is: {}'.format(
            results['energy']))

        num_particles = self.molecule.num_alpha + self.molecule.num_beta
        two_qubit_reduction = True
        num_orbitals = self.qubit_op.num_qubits + \
            (2 if two_qubit_reduction else 0)

        num_time_slices = 50
        n_ancillae = 9

        state_in = HartreeFock(self.qubit_op.num_qubits, num_orbitals,
                               num_particles, qubit_mapping,
                               two_qubit_reduction)
        iqft = Standard(n_ancillae)

        qpe = QPE(self.qubit_op,
                  state_in,
                  iqft,
                  num_time_slices,
                  n_ancillae,
                  paulis_grouping='random',
                  expansion_mode='suzuki',
                  expansion_order=2,
                  shallow_circuit_concat=True)
        backend = get_aer_backend('qasm_simulator')
        quantum_instance = QuantumInstance(backend,
                                           shots=100,
                                           pass_manager=PassManager())
        result = qpe.run(quantum_instance)

        self.log.debug('measurement results:      {}'.format(
            result['measurements']))
        self.log.debug('top result str label:     {}'.format(
            result['top_measurement_label']))
        self.log.debug('top result in decimal:    {}'.format(
            result['top_measurement_decimal']))
        self.log.debug('stretch:                  {}'.format(
            result['stretch']))
        self.log.debug('translation:              {}'.format(
            result['translation']))
        self.log.debug('final energy from QPE:    {}'.format(result['energy']))
        self.log.debug('reference energy:         {}'.format(
            self.reference_energy))
        self.log.debug('ref energy (transformed): {}'.format(
            (self.reference_energy + result['translation']) *
            result['stretch']))
        self.log.debug('ref binary str label:     {}'.format(
            decimal_to_binary((self.reference_energy + result['translation']) *
                              result['stretch'],
                              max_num_digits=n_ancillae + 3,
                              fractional_part_only=True)))

        np.testing.assert_approx_equal(result['energy'],
                                       self.reference_energy,
                                       significant=2)
Ejemplo n.º 11
0
# Build the qubit operator, which is the input to the VQE algorithm in Aqua
ferOp = FermionicOperator(h1=molecule.one_body_integrals,
                          h2=molecule.two_body_integrals)
map_type = 'PARITY'
qubitOp = ferOp.mapping(map_type)
qubitOp = qubitOp.two_qubit_reduced_operator(num_particles)
num_qubits = qubitOp.num_qubits

# set the backend for the quantum computation
from qiskit import Aer
backend = Aer.get_backend('statevector_simulator')

# setup a classical optimizer for VQE
from qiskit_aqua.components.optimizers import L_BFGS_B
optimizer = L_BFGS_B()

# setup the initial state for the variational form
from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock
init_state = HartreeFock(num_qubits, num_spin_orbitals, num_particles)

# setup the variational form for VQE
from qiskit_aqua.components.variational_forms import RYRZ
var_form = RYRZ(num_qubits, initial_state=init_state)

# setup and run VQE
from qiskit_aqua.algorithms import VQE
algorithm = VQE(qubitOp, var_form, optimizer)
result = algorithm.run(backend)
print(result['energy'])