Ejemplo n.º 1
0
 def test_auto_penalty(self):
     """Test auto penalty function"""
     op = QuadraticProgram()
     op.binary_var("x")
     op.binary_var("y")
     op.binary_var("z")
     op.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2})
     op.linear_constraint(linear={
         "x": 1,
         "y": 1,
         "z": 1
     },
                          sense="EQ",
                          rhs=2,
                          name="xyz_eq")
     lineq2penalty = LinearEqualityToPenalty(penalty=1e5)
     lineq2penalty_auto = LinearEqualityToPenalty()
     qubo = lineq2penalty.convert(op)
     qubo_auto = lineq2penalty_auto.convert(op)
     exact_mes = NumPyMinimumEigensolver()
     exact = MinimumEigenOptimizer(exact_mes)
     result = exact.solve(qubo)
     result_auto = exact.solve(qubo_auto)
     self.assertEqual(result.fval, result_auto.fval)
     np.testing.assert_array_almost_equal(result.x, result_auto.x)
Ejemplo n.º 2
0
def build_qubo_unconstrained_from_edges_dict(G, all_edges_dict, variables):
    qubo = QuadraticProgram()
    linear, quadratic = get_linear_quadratic_coeffs(G, all_edges_dict)
    for var in variables:
        qubo.binary_var(var)
    qubo.minimize(linear=linear, quadratic=quadratic)
    return qubo, linear, quadratic
Ejemplo n.º 3
0
 def test_maximize_to_minimize(self):
     """Test maximization to minimization conversion"""
     op_max = QuadraticProgram()
     op_min = QuadraticProgram()
     for i in range(2):
         op_max.binary_var(name="x{}".format(i))
         op_min.binary_var(name="x{}".format(i))
     op_max.integer_var(name="x{}".format(2), lowerbound=-3, upperbound=3)
     op_min.integer_var(name="x{}".format(2), lowerbound=-3, upperbound=3)
     op_max.maximize(constant=3,
                     linear={"x0": 1},
                     quadratic={("x1", "x2"): 2})
     op_min.minimize(constant=3,
                     linear={"x0": 1},
                     quadratic={("x1", "x2"): 2})
     # check conversion of maximization problem
     conv = MaximizeToMinimize()
     op_conv = conv.convert(op_max)
     self.assertEqual(op_conv.objective.sense,
                      op_conv.objective.Sense.MINIMIZE)
     x = [0, 1, 2]
     fval_min = op_conv.objective.evaluate(conv.interpret(x))
     self.assertAlmostEqual(fval_min, -7)
     self.assertAlmostEqual(op_max.objective.evaluate(x), -fval_min)
     # check conversion of minimization problem
     op_conv = conv.convert(op_min)
     self.assertEqual(op_conv.objective.sense, op_min.objective.sense)
     fval_min = op_conv.objective.evaluate(conv.interpret(x))
     self.assertAlmostEqual(op_min.objective.evaluate(x), fval_min)
Ejemplo n.º 4
0
 def test_penalty_recalculation_when_reusing(self):
     """Test the penalty retrieval and recalculation of LinearEqualityToPenalty"""
     op = QuadraticProgram()
     op.binary_var("x")
     op.binary_var("y")
     op.binary_var("z")
     op.minimize(constant=3, linear={"x": 1}, quadratic={("x", "y"): 2})
     op.linear_constraint(linear={
         "x": 1,
         "y": 1,
         "z": 1
     },
                          sense="EQ",
                          rhs=2,
                          name="xyz_eq")
     # First, create a converter with no penalty
     lineq2penalty = LinearEqualityToPenalty()
     self.assertIsNone(lineq2penalty.penalty)
     # Then converter must calculate the penalty for the problem (should be 4.0)
     lineq2penalty.convert(op)
     self.assertEqual(4, lineq2penalty.penalty)
     # Re-use the converter with a newly defined penalty
     lineq2penalty.penalty = 3
     lineq2penalty.convert(op)
     self.assertEqual(3, lineq2penalty.penalty)
     # Re-use the converter letting the penalty be calculated again
     lineq2penalty.penalty = None
     lineq2penalty.convert(op)
     self.assertEqual(4, lineq2penalty.penalty)
Ejemplo n.º 5
0
 def test_objective_handling(self):
     """test objective handling"""
     q_p = QuadraticProgram()
     q_p.binary_var("x")
     q_p.binary_var("y")
     q_p.binary_var("z")
     q_p.minimize()
     obj = q_p.objective
     self.assertEqual(obj.sense, QuadraticObjective.Sense.MINIMIZE)
     self.assertEqual(obj.constant, 0)
     self.assertDictEqual(obj.linear.to_dict(), {})
     self.assertDictEqual(obj.quadratic.to_dict(), {})
     q_p.maximize(1, {"y": 1}, {("z", "x"): 1, ("y", "y"): 1})
     obj = q_p.objective
     self.assertEqual(obj.sense, QuadraticObjective.Sense.MAXIMIZE)
     self.assertEqual(obj.constant, 1)
     self.assertDictEqual(obj.linear.to_dict(), {1: 1})
     self.assertDictEqual(obj.linear.to_dict(use_name=True), {"y": 1})
     self.assertListEqual(obj.linear.to_array().tolist(), [0, 1, 0])
     self.assertDictEqual(obj.quadratic.to_dict(), {(0, 2): 1, (1, 1): 1})
     self.assertDictEqual(
         obj.quadratic.to_dict(symmetric=True), {(0, 2): 0.5, (2, 0): 0.5, (1, 1): 1}
     )
     self.assertDictEqual(obj.quadratic.to_dict(use_name=True), {("x", "z"): 1, ("y", "y"): 1})
     self.assertDictEqual(
         obj.quadratic.to_dict(use_name=True, symmetric=True),
         {("x", "z"): 0.5, ("z", "x"): 0.5, ("y", "y"): 1},
     )
     self.assertListEqual(obj.quadratic.to_array().tolist(), [[0, 0, 1], [0, 1, 0], [0, 0, 0]])
     self.assertListEqual(
         obj.quadratic.to_array(symmetric=True).tolist(),
         [[0, 0, 0.5], [0, 1, 0], [0.5, 0, 0]],
     )
Ejemplo n.º 6
0
    def test_linear_equality_to_penalty_decode(self):
        """Test decode func of LinearEqualityToPenalty"""
        qprog = QuadraticProgram()
        qprog.binary_var("x")
        qprog.binary_var("y")
        qprog.binary_var("z")
        qprog.maximize(linear={"x": 3, "y": 1, "z": 1})
        qprog.linear_constraint(linear={
            "x": 1,
            "y": 1,
            "z": 1
        },
                                sense="EQ",
                                rhs=2,
                                name="xyz_eq")
        lineq2penalty = LinearEqualityToPenalty()
        qubo = lineq2penalty.convert(qprog)
        exact_mes = NumPyMinimumEigensolver()
        exact = MinimumEigenOptimizer(exact_mes)
        result = exact.solve(qubo)

        new_x = lineq2penalty.interpret(result.x)
        np.testing.assert_array_almost_equal(new_x, [1, 1, 0])
        infeasible_x = lineq2penalty.interpret([1, 1, 1])
        np.testing.assert_array_almost_equal(infeasible_x, [1, 1, 1])
Ejemplo n.º 7
0
    def setUp(self):
        super().setUp()
        random.seed(123)
        low = 0
        high = 100
        pos = {
            i: (random.randint(low, high), random.randint(low, high))
            for i in range(4)
        }
        self.graph = nx.random_geometric_graph(
            4, np.hypot(high - low, high - low) + 1, pos=pos)
        for w, v in self.graph.edges:
            delta = [
                self.graph.nodes[w]["pos"][i] - self.graph.nodes[v]["pos"][i]
                for i in range(2)
            ]
            self.graph.edges[w, v]["weight"] = np.rint(
                np.hypot(delta[0], delta[1]))

        op = QuadraticProgram()
        for i in range(16):
            op.binary_var()
        self.result = OptimizationResult(
            x=[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1],
            fval=272,
            variables=op.variables,
            status=OptimizationResultStatus.SUCCESS,
        )
    def test_quadratic_program_to_qubo_inequality_to_penalty(self):
        """Test QuadraticProgramToQubo, passing inequality pattern"""

        op = QuadraticProgram()
        conv = QuadraticProgramToQubo()
        op.binary_var(name="x")
        op.binary_var(name="y")

        # Linear constraints
        linear_constraint = {"x": 1, "y": 1}
        op.linear_constraint(linear_constraint, Constraint.Sense.GE, 1,
                             "P(1-x-y+xy)")

        conv.penalty = 1
        constant = 1
        linear = {"x": -conv.penalty, "y": -conv.penalty}
        quadratic = {("x", "y"): conv.penalty}
        op2 = conv.convert(op)
        cnst = op2.objective.constant
        ldct = op2.objective.linear.to_dict(use_name=True)
        qdct = op2.objective.quadratic.to_dict(use_name=True)
        self.assertEqual(cnst, constant)
        self.assertEqual(ldct, linear)
        self.assertEqual(qdct, quadratic)
        self.assertEqual(op2.get_num_linear_constraints(), 0)
Ejemplo n.º 9
0
    def test_write_to_lp_file(self):
        """test write problem"""
        q_p = QuadraticProgram("my problem")
        q_p.binary_var("x")
        q_p.integer_var(-1, 5, "y")
        q_p.continuous_var(-1, 5, "z")
        q_p.minimize(1, {"x": 1, "y": -1, "z": 10}, {("x", "x"): 0.5, ("y", "z"): -1})
        q_p.linear_constraint({"x": 1, "y": 2}, "==", 1, "lin_eq")
        q_p.linear_constraint({"x": 1, "y": 2}, "<=", 1, "lin_leq")
        q_p.linear_constraint({"x": 1, "y": 2}, ">=", 1, "lin_geq")
        q_p.quadratic_constraint(
            {"x": 1, "y": 1},
            {("x", "x"): 1, ("y", "z"): -1, ("z", "z"): 2},
            "==",
            1,
            "quad_eq",
        )
        q_p.quadratic_constraint(
            {"x": 1, "y": 1},
            {("x", "x"): 1, ("y", "z"): -1, ("z", "z"): 2},
            "<=",
            1,
            "quad_leq",
        )
        q_p.quadratic_constraint(
            {"x": 1, "y": 1},
            {("x", "x"): 1, ("y", "z"): -1, ("z", "z"): 2},
            ">=",
            1,
            "quad_geq",
        )

        reference_file_name = self.get_resource_path(
            "test_quadratic_program.lp", "problems/resources"
        )
        with tempfile.TemporaryDirectory() as tmp:
            temp_output_path = path.join(tmp, "temp.lp")
            q_p.write_to_lp_file(temp_output_path)
            with open(reference_file_name, encoding="utf8") as reference, open(
                temp_output_path, encoding="utf8"
            ) as temp_output_file:
                lines1 = temp_output_file.readlines()
                lines2 = reference.readlines()
                self.assertListEqual(lines1, lines2)

        with tempfile.TemporaryDirectory() as temp_problem_dir:
            q_p.write_to_lp_file(temp_problem_dir)
            with open(path.join(temp_problem_dir, "my_problem.lp"), encoding="utf8") as file1, open(
                reference_file_name, encoding="utf8"
            ) as file2:
                lines1 = file1.readlines()
                lines2 = file2.readlines()
                self.assertListEqual(lines1, lines2)

        with self.assertRaises(OSError):
            q_p.write_to_lp_file("/cannot/write/this/file.lp")

        with self.assertRaises(DOcplexException):
            q_p.write_to_lp_file("")
Ejemplo n.º 10
0
def build_qubo_unconstrained_from_nodes(G, routes_dict):
    all_edges_dict = get_edges_dict(routes_dict)
    qubo = QuadraticProgram()
    linear, quadratic = get_linear_quadratic_coeffs(G, all_edges_dict)
    for var in routes_dict.keys():
        qubo.binary_var(var)
    qubo.minimize(linear=linear, quadratic=quadratic)
    return qubo, linear, quadratic
Ejemplo n.º 11
0
    def test_empty_name(self):
        """Test empty names"""

        with self.subTest("problem name"):
            q_p = QuadraticProgram("")
            self.assertEqual(q_p.name, "")

        with self.subTest("variable name"):
            q_p = QuadraticProgram()
            x = q_p.binary_var(name="")
            y = q_p.integer_var(name="")
            z = q_p.continuous_var(name="")
            self.assertEqual(x.name, "x0")
            self.assertEqual(y.name, "x1")
            self.assertEqual(z.name, "x2")

        with self.subTest("variable name 2"):
            q_p = QuadraticProgram()
            w = q_p.binary_var(name="w")
            x = q_p.binary_var(name="")
            y = q_p.integer_var(name="")
            z = q_p.continuous_var(name="")
            self.assertEqual(w.name, "w")
            self.assertEqual(x.name, "x1")
            self.assertEqual(y.name, "x2")
            self.assertEqual(z.name, "x3")

        with self.subTest("variable name list"):
            q_p = QuadraticProgram()
            x = q_p.binary_var_list(2, name="")
            y = q_p.integer_var_list(2, name="")
            z = q_p.continuous_var_list(2, name="")
            self.assertListEqual([v.name for v in x], ["x0", "x1"])
            self.assertListEqual([v.name for v in y], ["x2", "x3"])
            self.assertListEqual([v.name for v in z], ["x4", "x5"])

        with self.subTest("variable name dict"):
            q_p = QuadraticProgram()
            x = q_p.binary_var_dict(2, name="")
            y = q_p.integer_var_dict(2, name="")
            z = q_p.continuous_var_dict(2, name="")
            self.assertDictEqual({k: v.name for k, v in x.items()}, {"x0": "x0", "x1": "x1"})
            self.assertDictEqual({k: v.name for k, v in y.items()}, {"x2": "x2", "x3": "x3"})
            self.assertDictEqual({k: v.name for k, v in z.items()}, {"x4": "x4", "x5": "x5"})

        with self.subTest("linear constraint name"):
            q_p = QuadraticProgram()
            x = q_p.linear_constraint(name="")
            y = q_p.linear_constraint(name="")
            self.assertEqual(x.name, "c0")
            self.assertEqual(y.name, "c1")

        with self.subTest("quadratic constraint name"):
            q_p = QuadraticProgram()
            x = q_p.quadratic_constraint(name="")
            y = q_p.quadratic_constraint(name="")
            self.assertEqual(x.name, "q0")
            self.assertEqual(y.name, "q1")
 def setUp(self):
     """Set up for the test"""
     super().setUp()
     self.num_set = [8, 7, 6, 5, 4]
     op = QuadraticProgram()
     for _ in range(5):
         op.binary_var()
     self.result = OptimizationResult(
         x=[1, 1, 0, 0, 0], fval=0, variables=op.variables,
         status=OptimizationResultStatus.SUCCESS)
Ejemplo n.º 13
0
 def setUp(self):
     """set up the test class"""
     super().setUp()
     self.graph = nx.gnm_random_graph(5, 4, 3)
     op = QuadraticProgram()
     for _ in range(5):
         op.binary_var()
     self.result = OptimizationResult(
         x=[0, 0, 0, 0, 1], fval=1, variables=op.variables,
         status=OptimizationResultStatus.SUCCESS)
Ejemplo n.º 14
0
 def test_symmetric_set(self):
     """ test symmetric set """
     q_p = QuadraticProgram()
     q_p.binary_var('x')
     q_p.binary_var('y')
     q_p.binary_var('z')
     quad = QuadraticExpression(q_p, {('x', 'y'): -1, ('y', 'x'): 2, ('z', 'x'): 3})
     self.assertDictEqual(quad.to_dict(use_name=True), {('x', 'y'): 1, ('x', 'z'): 3})
     self.assertDictEqual(quad.to_dict(symmetric=True, use_name=True),
                          {('x', 'y'): 0.5, ('y', 'x'): 0.5, ('x', 'z'): 1.5, ('z', 'x'): 1.5})
Ejemplo n.º 15
0
 def setUp(self):
     super().setUp()
     self.graph = nx.gnm_random_graph(5, 4, 3)
     op = QuadraticProgram()
     for _ in range(5):
         op.binary_var()
     self.result = OptimizationResult(
         x=[1, 1, 1, 1, 0],
         fval=4,
         variables=op.variables,
         status=OptimizationResultStatus.SUCCESS)
    def test_linear_inequality_to_penalty7(self):
        """Test special constraint to penalty 6 x-y >= 0 -> P(y-x*y)"""

        op = QuadraticProgram()
        lip = LinearInequalityToPenalty()

        op.binary_var(name="x")
        op.binary_var(name="y")
        # Linear constraints
        linear_constraint = {"x": 1, "y": -1}
        op.linear_constraint(linear_constraint, Constraint.Sense.GE, 0,
                             "P(y-xy)")

        # Test with no max/min
        with self.subTest("No max/min"):
            self.assertEqual(op.get_num_linear_constraints(), 1)
            penalty = 1
            linear = {"y": penalty}
            quadratic = {("x", "y"): -1 * penalty}
            op2 = lip.convert(op)
            ldct = op2.objective.linear.to_dict(use_name=True)
            qdct = op2.objective.quadratic.to_dict(use_name=True)
            self.assertEqual(ldct, linear)
            self.assertEqual(qdct, quadratic)
            self.assertEqual(op2.get_num_linear_constraints(), 0)

        # Test maximize
        with self.subTest("Maximize"):
            linear = {"x": 2, "y": 1}
            op.maximize(linear=linear)
            penalty = 4
            linear["y"] = linear["y"] - penalty
            quadratic = {("x", "y"): penalty}
            op2 = lip.convert(op)
            ldct = op2.objective.linear.to_dict(use_name=True)
            qdct = op2.objective.quadratic.to_dict(use_name=True)
            self.assertEqual(ldct, linear)
            self.assertEqual(qdct, quadratic)
            self.assertEqual(op2.get_num_linear_constraints(), 0)

        # Test minimize
        with self.subTest("Minimize"):
            linear = {"x": 2, "y": 1}
            op.minimize(linear={"x": 2, "y": 1})
            penalty = 4
            linear["y"] = linear["y"] + penalty
            quadratic = {("x", "y"): -1 * penalty}
            op2 = lip.convert(op)
            ldct = op2.objective.linear.to_dict(use_name=True)
            qdct = op2.objective.quadratic.to_dict(use_name=True)
            self.assertEqual(ldct, linear)
            self.assertEqual(qdct, quadratic)
            self.assertEqual(op2.get_num_linear_constraints(), 0)
 def test_symmetric_set(self):
     """test symmetric set"""
     q_p = QuadraticProgram()
     q_p.binary_var("x")
     q_p.binary_var("y")
     q_p.binary_var("z")
     quad = QuadraticExpression(q_p, {("x", "y"): -1, ("y", "x"): 2, ("z", "x"): 3})
     self.assertDictEqual(quad.to_dict(use_name=True), {("x", "y"): 1, ("x", "z"): 3})
     self.assertDictEqual(
         quad.to_dict(symmetric=True, use_name=True),
         {("x", "y"): 0.5, ("y", "x"): 0.5, ("x", "z"): 1.5, ("z", "x"): 1.5},
     )
Ejemplo n.º 18
0
 def setUp(self):
     super().setUp()
     self.total_set = [1, 2, 3, 4, 5]
     self.list_of_subsets = [[1, 2, 3], [2, 3, 4], [4, 5], [1, 3], [2]]
     op = QuadraticProgram()
     for _ in range(5):
         op.binary_var()
     self.result = OptimizationResult(
         x=[0, 0, 1, 1, 1],
         fval=3,
         variables=op.variables,
         status=OptimizationResultStatus.SUCCESS)
Ejemplo n.º 19
0
 def setUp(self):
     """Set up for the tests"""
     super().setUp()
     self.values = [10, 40, 30, 50]
     self.weights = [5, 4, 6, 3]
     self.max_weight = 10
     op = QuadraticProgram()
     for _ in range(4):
         op.binary_var()
     self.result = OptimizationResult(
         x=[0, 1, 0, 1], fval=90, variables=op.variables,
         status=OptimizationResultStatus.SUCCESS)
Ejemplo n.º 20
0
 def setUp(self):
     """Set up for the tests"""
     super().setUp()
     self.graph = nx.gnm_random_graph(4, 4, 123)
     op = QuadraticProgram()
     for _ in range(4):
         op.binary_var()
     self.result = OptimizationResult(
         x=[0, 1, 1, 0],
         fval=2,
         variables=op.variables,
         status=OptimizationResultStatus.SUCCESS)
Ejemplo n.º 21
0
 def setUp(self):
     """Set up for the tests"""
     super().setUp()
     self.total_set = [1, 2, 3, 4, 5]
     self.list_of_subsets = [[1, 4], [2, 3, 4], [1, 5], [2, 3]]
     op = QuadraticProgram()
     for _ in range(4):
         op.binary_var()
     self.result = OptimizationResult(
         x=[0, 1, 1, 0],
         fval=2,
         variables=op.variables,
         status=OptimizationResultStatus.SUCCESS)
    def test_linear_inequality_to_penalty4(self):
        """Test special constraint to penalty x1+x2+x3+... <= 1 -> P(x1*x2+x1*x3+...)"""

        op = QuadraticProgram()
        lip = LinearInequalityToPenalty()

        op.binary_var(name="x")
        op.binary_var(name="y")
        op.binary_var(name="z")
        # Linear constraints
        linear_constraint = {"x": 1, "y": 1, "z": 1}
        op.linear_constraint(linear_constraint, Constraint.Sense.LE, 1,
                             "P(xy+yz+zx)")

        # Test with no max/min
        with self.subTest("No max/min"):
            self.assertEqual(op.get_num_linear_constraints(), 1)
            penalty = 1
            quadratic = {
                ("x", "y"): penalty,
                ("x", "z"): penalty,
                ("y", "z"): penalty
            }
            op2 = lip.convert(op)
            qdct = op2.objective.quadratic.to_dict(use_name=True)
            self.assertEqual(qdct, quadratic)
            self.assertEqual(op2.get_num_linear_constraints(), 0)

        # Test maximize
        op = QuadraticProgram()
        op.binary_var_list(5)
        linear2 = [1, 1, 0, 0, 0]
        op.maximize(linear=linear2)
        op.linear_constraint([1, 1, 1, 1, 1], Constraint.Sense.LE, 1, "")

        with self.subTest("Maximum"):
            self.assertEqual(op.get_num_linear_constraints(), 1)
            lip.penalty = 5
            quadratic2 = [
                [0, 1, 1, 1, 1],
                [0, 0, 1, 1, 1],
                [0, 0, 0, 1, 1],
                [0, 0, 0, 0, 1],
                [0, 0, 0, 0, 0],
            ]
            op2 = lip.convert(op)
            ldct2 = op2.objective.linear.to_array()
            qdct2 = op2.objective.quadratic.to_array() / lip.penalty * -1
            self.assertEqual(ldct2.tolist(), linear2)
            self.assertEqual(qdct2.tolist(), quadratic2)
            self.assertEqual(op2.get_num_linear_constraints(), 0)
Ejemplo n.º 23
0
 def setUp(self):
     """Set up for the tests"""
     super().setUp()
     self.weights = [16, 9, 23]
     self.max_weight = 40
     self.max_number_of_bins = 2
     op = QuadraticProgram()
     for _ in range(12):
         op.binary_var()
     self.result = OptimizationResult(
         x=[1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1],
         fval=2.0,
         variables=op.variables,
         status=OptimizationResultStatus.SUCCESS,
     )
Ejemplo n.º 24
0
def qaoa(G):
    n = G.numberOfNodes()
    G = nw.nxadapter.nk2nx(G)
    w = nx.adjacency_matrix(G)
    problem = QuadraticProgram()
    _ = [problem.binary_var(f"x{i}") for i in range(n)]
    linear = w.dot(np.ones(n))
    quadratic = -w
    problem.maximize(linear=linear, quadratic=quadratic)
    c = [1]
    for _ in range(n - 1):
        c.append(0)
    problem.linear_constraint(c, '==', 1)

    cobyla = COBYLA()
    backend = BasicAer.get_backend('qasm_simulator')
    qaoa = QAOA(optimizer=cobyla, reps=3, quantum_instance=backend)
    algorithm = MinimumEigenOptimizer(qaoa)
    result = algorithm.solve(problem)
    L = result.x
    i = 0
    res = {}
    for x in L:
        res[i] = x
        i += 1
    return res
Ejemplo n.º 25
0
 def test_binary_to_integer(self):
     """Test binary to integer"""
     op = QuadraticProgram()
     for i in range(0, 2):
         op.binary_var(name="x{}".format(i))
     op.integer_var(name="x2", lowerbound=0, upperbound=5)
     linear = {"x0": 1, "x1": 2, "x2": 1}
     op.maximize(0, linear, {})
     linear = {}
     for x in op.variables:
         linear[x.name] = 1
     op.linear_constraint(linear, Constraint.Sense.EQ, 6, "x0x1x2")
     conv = IntegerToBinary()
     _ = conv.convert(op)
     new_x = conv.interpret([0, 1, 1, 1, 1])
     np.testing.assert_array_almost_equal(new_x, [0, 1, 5])
Ejemplo n.º 26
0
 def test_penalize_sense(self):
     """Test PenalizeLinearEqualityConstraints with senses"""
     op = QuadraticProgram()
     for i in range(3):
         op.binary_var(name="x{}".format(i))
     # Linear constraints
     linear_constraint = {"x0": 1, "x1": 1}
     op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1")
     linear_constraint = {"x1": 1, "x2": -1}
     op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2")
     linear_constraint = {"x0": 1, "x2": 3}
     op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2")
     self.assertEqual(op.get_num_linear_constraints(), 3)
     conv = LinearEqualityToPenalty()
     with self.assertRaises(QiskitOptimizationError):
         conv.convert(op)
Ejemplo n.º 27
0
 def test_0var_range_inequality(self):
     """ Test InequalityToEquality converter when the var_rang of the slack variable is 0"""
     op = QuadraticProgram()
     op.binary_var('x')
     op.binary_var('y')
     op.linear_constraint(linear={'x': 1, 'y': 1}, sense='LE', rhs=0, name='xy_leq1')
     op.linear_constraint(linear={'x': 1, 'y': 1}, sense='GE', rhs=2, name='xy_geq1')
     op.quadratic_constraint(quadratic={('x', 'x'): 1}, sense='LE', rhs=0, name='xy_leq2')
     op.quadratic_constraint(quadratic={('x', 'y'): 1}, sense='GE', rhs=1, name='xy_geq2')
     ineq2eq = InequalityToEquality()
     new_op = ineq2eq.convert(op)
     self.assertEqual(new_op.get_num_vars(), 2)
     self.assertTrue(all(l_const.sense == Constraint.Sense.EQ
                         for l_const in new_op.linear_constraints))
     self.assertTrue(all(q_const.sense == Constraint.Sense.EQ
                         for q_const in new_op.quadratic_constraints))
Ejemplo n.º 28
0
 def test_inequality_mode_auto(self):
     """ Test auto mode of InequalityToEqualityConverter() """
     op = QuadraticProgram()
     for i in range(3):
         op.binary_var(name='x{}'.format(i))
     # Linear constraints
     linear_constraint = {'x0': 1, 'x1': 1}
     op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, 'x0x1')
     linear_constraint = {'x1': 1, 'x2': -1}
     op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, 'x1x2')
     linear_constraint = {'x0': 1.1, 'x2': 2.2}
     op.linear_constraint(linear_constraint, Constraint.Sense.GE, 3.3, 'x0x2')
     conv = InequalityToEquality(mode='auto')
     op2 = conv.convert(op)
     lst = [op2.variables[3].vartype, op2.variables[4].vartype]
     self.assertListEqual(lst, [Variable.Type.INTEGER, Variable.Type.CONTINUOUS])
Ejemplo n.º 29
0
 def test_inequality_mode_integer(self):
     """Test integer mode of InequalityToEqualityConverter()"""
     op = QuadraticProgram()
     for i in range(3):
         op.binary_var(name=f"x{i}")
     # Linear constraints
     linear_constraint = {"x0": 1, "x1": 1}
     op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1")
     linear_constraint = {"x1": 1, "x2": -1}
     op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2")
     linear_constraint = {"x0": 1, "x2": 3}
     op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2")
     conv = InequalityToEquality(mode="integer")
     op2 = conv.convert(op)
     lst = [op2.variables[3].vartype, op2.variables[4].vartype]
     self.assertListEqual(lst,
                          [Variable.Type.INTEGER, Variable.Type.INTEGER])
Ejemplo n.º 30
0
 def test_inequality_mode_continuous(self):
     """Test continuous mode of InequalityToEqualityConverter()"""
     op = QuadraticProgram()
     for i in range(3):
         op.binary_var(name="x{}".format(i))
     # Linear constraints
     linear_constraint = {"x0": 1, "x1": 1}
     op.linear_constraint(linear_constraint, Constraint.Sense.EQ, 1, "x0x1")
     linear_constraint = {"x1": 1, "x2": -1}
     op.linear_constraint(linear_constraint, Constraint.Sense.LE, 2, "x1x2")
     linear_constraint = {"x0": 1, "x2": 3}
     op.linear_constraint(linear_constraint, Constraint.Sense.GE, 2, "x0x2")
     conv = InequalityToEquality(mode="continuous")
     op2 = conv.convert(op)
     lst = [op2.variables[3].vartype, op2.variables[4].vartype]
     self.assertListEqual(
         lst, [Variable.Type.CONTINUOUS, Variable.Type.CONTINUOUS])