Ejemplo n.º 1
0
def train_with_sigana():
    """train model followed by SigAnaRecord

    Returns
    -------
        pred_score: pandas.DataFrame
            predict scores
        performance: dict
            model performance
    """
    model = init_instance_by_config(task["model"])
    dataset = init_instance_by_config(task["dataset"])

    # start exp
    with R.start(experiment_name="workflow_with_sigana"):
        R.log_params(**flatten_dict(task))
        model.fit(dataset)

        # predict and calculate ic and ric
        recorder = R.get_recorder()
        sar = SigAnaRecord(recorder, model=model, dataset=dataset)
        sar.generate()
        ic = sar.load(sar.get_path("ic.pkl"))
        ric = sar.load(sar.get_path("ric.pkl"))
        pred_score = sar.load("pred.pkl")

        smr = SignalMseRecord(recorder)
        smr.generate()
        uri_path = R.get_uri()
    return pred_score, {"ic": ic, "ric": ric}, uri_path
Ejemplo n.º 2
0
def train_with_sigana(uri_path: str = None):
    """train model followed by SigAnaRecord

    Returns
    -------
        pred_score: pandas.DataFrame
            predict scores
        performance: dict
            model performance
    """
    model = init_instance_by_config(CSI300_GBDT_TASK["model"])
    dataset = init_instance_by_config(CSI300_GBDT_TASK["dataset"])
    # start exp
    with R.start(experiment_name="workflow_with_sigana", uri=uri_path):
        R.log_params(**flatten_dict(CSI300_GBDT_TASK))
        model.fit(dataset)
        recorder = R.get_recorder()

        sr = SignalRecord(model, dataset, recorder)
        sr.generate()
        pred_score = sr.load(sr.get_path("pred.pkl"))

        # predict and calculate ic and ric
        sar = SigAnaRecord(recorder)
        sar.generate()
        ic = sar.load(sar.get_path("ic.pkl"))
        ric = sar.load(sar.get_path("ric.pkl"))

        uri_path = R.get_uri()
    return pred_score, {"ic": ic, "ric": ric}, uri_path
Ejemplo n.º 3
0
def train():
    """train model

    Returns
    -------
        pred_score: pandas.DataFrame
            predict scores
        performance: dict
            model performance
    """

    # model initiaiton
    model = init_instance_by_config(task["model"])
    dataset = init_instance_by_config(task["dataset"])
    # To test __repr__
    print(dataset)
    print(R)

    # start exp
    with R.start(experiment_name="workflow"):
        R.log_params(**flatten_dict(task))
        model.fit(dataset)

        # prediction
        recorder = R.get_recorder()
        # To test __repr__
        print(recorder)
        # To test get_local_dir
        print(recorder.get_local_dir())
        rid = recorder.id
        sr = SignalRecord(model, dataset, recorder)
        sr.generate()
        pred_score = sr.load()

        # calculate ic and ric
        sar = SigAnaRecord(recorder)
        sar.generate()
        ic = sar.load(sar.get_path("ic.pkl"))
        ric = sar.load(sar.get_path("ric.pkl"))

    return pred_score, {"ic": ic, "ric": ric}, rid
Ejemplo n.º 4
0
                "close_cost": 0.0015,
                "min_cost": 5,
            },
        },
    }

    # NOTE: This line is optional
    # It demonstrates that the dataset can be used standalone.
    example_df = dataset.prepare("train")
    print(example_df.head())

    # start exp
    with R.start(experiment_name="workflow"):
        R.log_params(**flatten_dict(CSI300_GBDT_TASK))
        model.fit(dataset)
        R.save_objects(**{"params.pkl": model})

        # prediction
        recorder = R.get_recorder()
        sr = SignalRecord(model, dataset, recorder)
        sr.generate()

        # Signal Analysis
        sar = SigAnaRecord(recorder)
        sar.generate()

        # backtest. If users want to use backtest based on their own prediction,
        # please refer to https://qlib.readthedocs.io/en/latest/component/recorder.html#record-template.
        par = PortAnaRecord(recorder, port_analysis_config, "day")
        par.generate()