Ejemplo n.º 1
0
    def test3_domain(self):
        mol = Molecule(load='H2_pyscf_sto-3g.hdf5')

        domain_center = mol.domain('center')
        assert (domain_center['center'] == np.array([0., 0., 0.5])).all()

        domain_uniform = mol.domain('uniform')
        assert domain_uniform == {'method': 'uniform', 'min': -0.5, 'max': 1.5}

        domain_normal = mol.domain('normal')
        assert np.all(domain_normal['mean'] == np.array([0., 0., 0.5]))

        domain_atomic = mol.domain('atomic')
        assert np.all(domain_atomic['atom_coords'] == np.array([[0., 0., 0.],
                                                                [0., 0., 1.]]))
Ejemplo n.º 2
0
class TestH2Stat(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrow(self.mol,
                                kinetic='jacobi',
                                configs='single(2,2)')

        # sampler
        self.sampler = Metropolis(nwalkers=100,
                                  nstep=500,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  ntherm=0,
                                  ndecor=1,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

    def test_sampling_traj(self):

        pos = self.solver.sampler(self.solver.wf.pdf)
        obs = self.solver.sampling_traj(pos)

        plot_walkers_traj(obs.local_energy)
        plot_block(obs.local_energy)

    def test_stat(self):

        pos = self.solver.sampler(self.solver.wf.pdf)
        obs = self.solver.sampling_traj(pos)

        if __PLOT__:
            plot_blocking_energy(obs.local_energy, block_size=10)
            plot_correlation_coefficient(obs.local_energy)
            plot_integrated_autocorrelation_time(obs.local_energy)
Ejemplo n.º 3
0
class TestH2ADF(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)

        # molecule
        path_hdf5 = (PATH_TEST / 'hdf5/H2_adf_dzp.hdf5').absolute().as_posix()
        self.mol = Molecule(load=path_hdf5)

        # wave function
        self.wf = SlaterJastrow(self.mol,
                                kinetic='auto',
                                configs='single(2,2)')

        # sampler
        self.sampler = Metropolis(nwalkers=1000,
                                  nstep=2000,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69

    def test_single_point(self):

        self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos
        self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos
        self.solver.sampler = self.sampler

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        # vals on different archs
        expected_energy = [-1.1572532653808594, -1.1501641653648578]

        expected_variance = [0.05085879936814308, 0.05094174843043177]

        assert (np.any(np.isclose(e.data.item(), np.array(expected_energy))))
        assert (np.any(np.isclose(v.data.item(), np.array(expected_variance))))

        # assert(e > 2 * self.ground_state_energy and e < 0.)
        # assert(v > 0 and v < 5.)

    def test_wf_opt_auto_grad(self):

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        obs = self.solver.run(5)

    def test_wf_opt_manual_grad(self):
        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(5)
class TestLiHBackFlowPySCF(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        orbital_dependent_backflow=True,
                                        include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        self.wf.jastrow.jastrow_kernel.weight.data = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_0_wavefunction(self):

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)
        print(torch.stack([eauto, ejac], axis=1).squeeze())
        assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

    def test2_wf_opt_grad_auto(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        obs = self.solver.run(5)

    def test3_wf_opt_grad_manual(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy', 'parameters'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(5)
Ejemplo n.º 5
0
class TestLiHCorrelated(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        path_hdf5 = (PATH_TEST / 'hdf5/LiH_adf_dz.hdf5').absolute().as_posix()
        self.mol = Molecule(load=path_hdf5)

        # wave function
        self.wf = SlaterOrbitalDependentJastrow(self.mol,
                                                kinetic='jacobi',
                                                configs='cas(2,2)',
                                                include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        for ker in self.wf.jastrow.jastrow_kernel.jastrow_functions:
            ker.weight.data = torch.rand(1)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_0_wavefunction(self):

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)

        assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        # sample and compute observables
        obs = self.solver.single_point()
        _, _ = obs.energy, obs.variance

    # def test2_wf_opt_grad_auto(self):
    #     self.solver.sampler = self.sampler

    #     self.solver.configure(track=['local_energy'],
    #                           loss='energy', grad='auto')
    #     obs = self.solver.run(5)

    def test3_wf_opt_grad_manual(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(5)
Ejemplo n.º 6
0
class TestLiH(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = Orbital(self.mol,
                          kinetic='jacobi',
                          configs='single(2,2)',
                          use_jastrow=True,
                          include_all_mo=False)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverOrbital(wf=self.wf,
                                    sampler=self.sampler,
                                    optimizer=self.opt)

    def test1_single_point(self):

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        # # values on different arch
        # expected_energy = [-1.1464850902557373,
        #                    -1.14937478612449]

        # # values on different arch
        # expected_variance = [0.9279592633247375,
        #                      0.7445300449383236]

        # assert(np.any(np.isclose(e.data.item(), np.array(expected_energy))))
        # assert(np.any(np.isclose(v.data.item(), np.array(expected_variance))))

    def test2_wf_opt_grad_auto(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        obs = self.solver.run(5)

    def test3_wf_opt_grad_manual(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(5)
Ejemplo n.º 7
0
               calculator='pyscf',
               basis='sto-3g',
               unit='bohr',
               rank=hvd.local_rank())

# define the wave function
wf = SlaterJastrow(mol, kinetic='jacobi', configs='cas(2,2)', cuda=False)

# sampler
sampler = Metropolis(nwalkers=200,
                     nstep=200,
                     step_size=0.2,
                     ntherm=-1,
                     ndecor=100,
                     nelec=wf.nelec,
                     init=mol.domain('atomic'),
                     move={
                         'type': 'all-elec',
                         'proba': 'normal'
                     })

# optimizer
lr_dict = [{
    'params': wf.jastrow.parameters(),
    'lr': 3E-3
}, {
    'params': wf.ao.parameters(),
    'lr': 1E-6
}, {
    'params': wf.mo.parameters(),
    'lr': 1E-3
Ejemplo n.º 8
0
class TestH2Hvd(unittest.TestCase):

    def setUp(self):
        hvd.init()

        torch.manual_seed(0)
        np.random.seed(0)

        set_torch_double_precision()

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(
            atom='H 0 0 -0.69; H 0 0 0.69',
            unit='bohr',
            calculator='pyscf',
            basis='sto-3g',
            rank=hvd.local_rank())

        # wave function
        self.wf = SlaterJastrow(self.mol, kinetic='jacobi',
                                configs='cas(2,2)',
                                cuda=False)

        # sampler
        self.sampler = Metropolis(
            nwalkers=200,
            nstep=200,
            step_size=0.2,
            ndim=self.wf.ndim,
            nelec=self.wf.nelec,
            init=self.mol.domain('atomic'),
            move={
                'type': 'all-elec',
                'proba': 'normal'})

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrowHorovod(wf=self.wf, sampler=self.sampler,
                                                 optimizer=self.opt, rank=hvd.rank())

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69

    def test_single_point(self):
        self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos
        self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        e = e.data.item()
        v = v.data.item()

        assert np.isclose(e, -1.15, 0.2)
        assert 0 < v < 2

    def test_wf_opt(self):
        self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos
        self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos

        self.solver.configure(track=['local_energy'], freeze=['ao', 'mo'],
                              loss='energy', grad='auto',
                              ortho_mo=False, clip_loss=False,
                              resampling={'mode': 'update',
                                          'resample_every': 1,
                                          'nstep_update': 50})
        self.solver.run(10)

        MPI.COMM_WORLD.barrier()

        self.solver.wf.load(self.solver.hdf5file, 'wf_opt')
        self.solver.wf.eval()

        obs = self.solver.single_point()

        e, v = obs.energy, obs.variance

        e = e.data.numpy()
        v = v.data.numpy()

        assert np.isclose(e, -1.15, 0.2)
        assert 0 < v < 2
Ejemplo n.º 9
0
class TestLiHCorrelated(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # molecule
        path_hdf5 = (PATH_TEST / 'hdf5/LiH_adf_dz.hdf5').absolute().as_posix()
        self.mol = Molecule(load=path_hdf5)

        # wave function
        self.wf = CorrelatedOrbital(self.mol,
                                    kinetic='jacobi',
                                    configs='cas(2,2)',
                                    include_all_mo=True)

        # fc weights
        self.wf.fc.weight.data = torch.rand(self.wf.fc.weight.shape)

        # jastrow weights
        self.wf.jastrow.weight.data = torch.rand(self.wf.jastrow.weight.shape)

        # sampler
        self.sampler = Metropolis(nwalkers=500,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverOrbital(wf=self.wf,
                                    sampler=self.sampler,
                                    optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.tensor(np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_0_wavefunction(self):

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)
        print(torch.stack([eauto, ejac], axis=1).squeeze())
        assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        # # values on different arch
        # expected_energy = [-1.1464850902557373,
        #                    -1.14937478612449]

        # # values on different arch
        # expected_variance = [0.9279592633247375,
        #                      0.7445300449383236]

        # assert(np.any(np.isclose(e.data.item(), np.array(expected_energy))))
        # assert(np.any(np.isclose(v.data.item(), np.array(expected_variance))))

    def test2_wf_opt_grad_auto(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        obs = self.solver.run(5)

    def test3_wf_opt_grad_manual(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(5)
Ejemplo n.º 10
0
class TestH2Correlated(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)
        set_torch_double_precision()

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = CorrelatedOrbital(
            self.mol,
            kinetic='auto',
            configs='cas(2,2)',
            jastrow_type=FullyConnectedJastrow,
            # jastrow_type='pade_jastrow',
            include_all_mo=True)

        # sampler
        self.sampler = Metropolis(nwalkers=1000,
                                  nstep=2000,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverOrbital(wf=self.wf,
                                    sampler=self.sampler,
                                    optimizer=self.opt)

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69

    def test_0_wavefunction(self):

        # artificial pos
        self.nbatch = 10
        self.pos = torch.tensor(np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)
        print(torch.stack([eauto, ejac], axis=1).squeeze())
        assert torch.allclose(eauto.data, ejac.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos
        self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos
        self.solver.sampler = self.sampler

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        # values on different arch
        # expected_energy = [-1.1286007165908813,
        #                    -1.099538658544285]

        # # values on different arch
        # expected_variance = [0.45748308300971985,
        #                      0.5163105076990828]

        # assert(np.any(np.isclose(e.data.item(), np.array(expected_energy))))
        # assert(np.any(np.isclose(v.data.item(), np.array(expected_variance))))

    def test3_wf_opt(self):
        self.solver.sampler = self.sampler
        self.solver.configure(track=['local_energy', 'parameters'],
                              loss='energy',
                              grad='auto')
        obs = self.solver.run(5)
        if __PLOT__:
            plot_energy(obs.local_energy, e0=-1.1645, show_variance=True)

    def test4_geo_opt(self):

        self.solver.wf.ao.atom_coords[0, 2].data = torch.tensor(-0.37)
        self.solver.wf.ao.atom_coords[1, 2].data = torch.tensor(0.37)

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        self.solver.geo_opt(5,
                            nepoch_wf_init=10,
                            nepoch_wf_update=5,
                            hdf5_group='geo_opt_correlated')

        # load the best model
        self.solver.wf.load(self.solver.hdf5file, 'geo_opt_correlated')
        self.solver.wf.eval()

        # sample and compute variables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        e = e.data.numpy()
        v = v.data.numpy()

        # it might be too much to assert with the ground state energy
        assert (e > 2 * self.ground_state_energy and e < 0.)
        assert (v > 0 and v < 2.)
Ejemplo n.º 11
0
class TestSampler(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # orbital
        self.wf = Orbital(self.mol)

    def test_walkers_init(self):
        """Test different initialization methods of the walkers."""
        w1 = Walkers(nwalkers=10,
                     nelec=self.mol.nelec,
                     ndim=3,
                     init=self.mol.domain('center'))

        w2 = Walkers(nwalkers=10,
                     nelec=self.mol.nelec,
                     ndim=3,
                     init=self.mol.domain('uniform'))

        w3 = Walkers(nwalkers=10,
                     nelec=self.mol.nelec,
                     ndim=3,
                     init=self.mol.domain('normal'))

        w4 = Walkers(nwalkers=10,
                     nelec=self.mol.nelec,
                     ndim=3,
                     init=self.mol.domain('atomic'))

    def test_metropolis(self):
        """Test Metropolis sampling."""

        sampler = Metropolis(nwalkers=10,
                             nstep=20,
                             step_size=0.5,
                             ndim=self.wf.ndim,
                             nelec=self.wf.nelec,
                             init=self.mol.domain('normal'))

        for m in ['one-elec', 'all-elec', 'all-elec-iter']:
            for p in ['normal', 'uniform']:

                sampler.configure_move({'type': m, 'proba': p})
                pos = sampler(self.wf.pdf)

    def test_hmc(self):
        """Test HMC sampler."""
        sampler = Hamiltonian(nwalkers=10,
                              nstep=20,
                              step_size=0.1,
                              ndim=self.wf.ndim,
                              nelec=self.wf.nelec,
                              init=self.mol.domain('normal'))

        pos = sampler(self.wf.pdf)

    def test_gmh(self):
        """Test generalized MH."""
        sampler = GeneralizedMetropolis(nwalkers=10,
                                        nstep=20,
                                        step_size=0.2,
                                        nelec=self.wf.nelec,
                                        ndim=self.wf.ndim,
                                        init=self.mol.domain('normal'))

        pos = sampler(self.wf.pdf)
Ejemplo n.º 12
0
class TestH2(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(0)
        np.random.seed(0)

        # optimal parameters
        self.opt_r = 0.69  # the two h are at +0.69 and -0.69
        self.opt_sigma = 1.24

        # molecule
        self.mol = Molecule(atom='H 0 0 -0.69; H 0 0 0.69',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # wave function
        self.wf = SlaterJastrow(self.mol,
                                kinetic='auto',
                                configs='single(2,2)')

        # sampler
        self.sampler = Metropolis(nwalkers=1000,
                                  nstep=2000,
                                  step_size=0.5,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        self.hmc_sampler = Hamiltonian(nwalkers=100,
                                       nstep=200,
                                       step_size=0.1,
                                       ndim=self.wf.ndim,
                                       nelec=self.wf.nelec,
                                       init=self.mol.domain('normal'))

        # optimizer
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        # solver
        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # ground state energy
        self.ground_state_energy = -1.16

        # ground state pos
        self.ground_state_pos = 0.69

    def test1_single_point(self):

        self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos
        self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos
        self.solver.sampler = self.sampler

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        # values on different arch
        expected_energy = [-1.1464850902557373, -1.14937478612449]

        # values on different arch
        expected_variance = [0.9279592633247375, 0.7445300449383236]

        assert (np.any(np.isclose(e.data.item(), np.array(expected_energy))))
        assert (np.any(np.isclose(v.data.item(), np.array(expected_variance))))

    def test2_single_point_hmc(self):

        self.solver.wf.ao.atom_coords[0, 2] = -self.ground_state_pos
        self.solver.wf.ao.atom_coords[1, 2] = self.ground_state_pos
        self.solver.sampler = self.hmc_sampler

        # sample and compute observables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        # values on different arch
        expected_energy = [-1.0877732038497925, -1.088576]

        # values on different arch
        expected_variance = [0.14341972768306732, 0.163771]

        assert (np.any(np.isclose(e.data.item(), np.array(expected_energy))))
        assert (np.any(np.isclose(v.data.item(), np.array(expected_variance))))

    def test3_wf_opt(self):
        self.solver.sampler = self.sampler

        self.solver.configure(track=['local_energy', 'parameters'],
                              loss='energy',
                              grad='auto')
        obs = self.solver.run(5)
        if __PLOT__:
            plot_energy(obs.local_energy, e0=-1.1645, show_variance=True)

    def test4_geo_opt(self):

        self.solver.wf.ao.atom_coords[0, 2].data = torch.as_tensor(-0.37)
        self.solver.wf.ao.atom_coords[1, 2].data = torch.as_tensor(0.37)

        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        self.solver.geo_opt(5, nepoch_wf_init=10, nepoch_wf_update=5)

        # load the best model
        self.solver.wf.load(self.solver.hdf5file, 'geo_opt')
        self.solver.wf.eval()

        # sample and compute variables
        obs = self.solver.single_point()
        e, v = obs.energy, obs.variance

        e = e.data.numpy()
        v = v.data.numpy()

        # it might be too much to assert with the ground state energy
        assert (e > 2 * self.ground_state_energy and e < 0.)
        assert (v > 0 and v < 2.)

    def test5_sampling_traj(self):
        self.solver.sampler = self.sampler

        self.solver.sampler.nstep = 100
        self.solver.sampler.ntherm = 0
        self.solver.sampler.ndecor = 1

        pos = self.solver.sampler(self.solver.wf.pdf)
        obs = self.solver.sampling_traj(pos)

        if __PLOT__:
            plot_walkers_traj(obs.local_energy)
            plot_block(obs.local_energy)

            plot_blocking_energy(obs.local_energy, block_size=10)
            plot_correlation_coefficient(obs.local_energy)
            plot_integrated_autocorrelation_time(obs.local_energy)
Ejemplo n.º 13
0
class TestCompareLiHBackFlowPySCF(unittest.TestCase):
    def setUp(self):

        set_torch_double_precision()
        reset_generator()

        # molecule
        self.mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                            unit='bohr',
                            calculator='pyscf',
                            basis='sto-3g')

        # molecule
        self.mol_ref = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                                unit='bohr',
                                calculator='pyscf',
                                basis='sto-3g')

        # backflow wave function
        self.wf = SlaterJastrowBackFlow(self.mol,
                                        kinetic='jacobi',
                                        configs='single_double(2,2)',
                                        include_all_mo=True)
        self.wf.ao.backflow_trans.backflow_kernel.weight.data *= 0.
        self.wf.ao.backflow_trans.backflow_kernel.weight.requires_grad = False

        # normal wave function
        self.wf_ref = SlaterJastrow(self.mol_ref,
                                    kinetic='jacobi',
                                    include_all_mo=True,
                                    configs='single_double(2,2)')

        # fc weights
        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight.clone()
        self.wf_ref.fc.weight.data = self.random_fc_weight.clone()

        # jastrow weights
        self.random_jastrow_weight = torch.rand(
            self.wf.jastrow.jastrow_kernel.weight.shape)

        self.wf.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )
        self.wf_ref.jastrow.jastrow_kernel.weight.data = self.random_jastrow_weight.clone(
        )

        reset_generator()
        # sampler
        self.sampler = Metropolis(nwalkers=5,
                                  nstep=200,
                                  step_size=0.05,
                                  ndim=self.wf.ndim,
                                  nelec=self.wf.nelec,
                                  init=self.mol.domain('normal'),
                                  move={
                                      'type': 'all-elec',
                                      'proba': 'normal'
                                  })

        reset_generator()
        self.sampler_ref = Metropolis(nwalkers=5,
                                      nstep=200,
                                      step_size=0.05,
                                      ndim=self.wf.ndim,
                                      nelec=self.wf.nelec,
                                      init=self.mol.domain('normal'),
                                      move={
                                          'type': 'all-elec',
                                          'proba': 'normal'
                                      })

        # optimizer
        reset_generator()
        self.opt = optim.Adam(self.wf.parameters(), lr=0.01)

        reset_generator()
        self.opt_ref = optim.Adam(self.wf_ref.parameters(), lr=0.01)

        # solver
        self.solver_ref = SolverSlaterJastrow(wf=self.wf_ref,
                                              sampler=self.sampler_ref,
                                              optimizer=self.opt_ref)

        self.solver = SolverSlaterJastrow(wf=self.wf,
                                          sampler=self.sampler,
                                          optimizer=self.opt)

        # artificial pos
        self.nbatch = 10
        self.pos = torch.as_tensor(
            np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_0_wavefunction(self):

        # compute the kinetic energy using bf orb
        reset_generator()
        e_bf = self.wf.kinetic_energy_jacobi(self.pos)

        # compute the kinetic energy
        reset_generator()
        e_ref = self.wf_ref.kinetic_energy_jacobi(self.pos)

        print(torch.stack([e_bf, e_ref], axis=1).squeeze())
        assert torch.allclose(e_bf.data, e_ref.data, rtol=1E-4, atol=1E-4)

    def test1_single_point(self):

        # sample and compute observables
        reset_generator()
        obs = self.solver.single_point()
        e_bf, v_bf = obs.energy, obs.variance

        obs = self.solver.single_point()
        e_bf, v_bf = obs.energy, obs.variance

        # sample and compute observables
        reset_generator()
        obs_ref = self.solver_ref.single_point()
        e_ref, v_ref = obs_ref.energy, obs.variance

        obs_ref = self.solver_ref.single_point()
        e_ref, v_ref = obs_ref.energy, obs.variance

        # compare values
        assert torch.allclose(e_bf.data, e_ref.data, rtol=1E-4, atol=1E-4)

        assert torch.allclose(v_bf.data, v_ref.data, rtol=1E-4, atol=1E-4)

    def test2_wf_opt_grad_auto(self):

        nepoch = 5

        # optimize using backflow
        self.solver.configure(track=['local_energy'],
                              loss='energy',
                              grad='auto')
        self.solver.configure_resampling(mode='never')

        reset_generator()
        obs = self.solver.run(nepoch)
        e_bf = torch.as_tensor(np.array(obs.energy))

        # optimize using ref
        self.solver_ref.configure(track=['local_energy'],
                                  loss='energy',
                                  grad='auto')
        self.solver_ref.configure_resampling(mode='never')

        reset_generator()
        obs_ref = self.solver_ref.run(nepoch)
        e_ref = torch.as_tensor(np.array(obs_ref.energy))

        assert torch.allclose(e_bf, e_ref, rtol=1E-4, atol=1E-4)

    def test3_wf_opt_grad_manual(self):

        nepoch = 5

        # optimize using backflow
        reset_generator()
        self.solver.configure(track=['local_energy', 'parameters'],
                              loss='energy',
                              grad='manual')
        obs = self.solver.run(nepoch)
        e_bf = torch.as_tensor(np.array(obs.energy))

        # optimize using backflow
        reset_generator()
        self.solver_ref.configure(track=['local_energy', 'parameters'],
                                  loss='energy',
                                  grad='manual')
        obs = self.solver_ref.run(nepoch)
        e_ref = torch.as_tensor(np.array(obs.energy))

        # compare values
        assert torch.allclose(e_bf, e_ref, rtol=1E-4, atol=1E-4)