Ejemplo n.º 1
0
class TestGenericJastrowWF(unittest.TestCase):

    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(
            atom='Li 0 0 0; H 0 0 1.',
            unit='bohr',
            calculator='pyscf',
            basis='sto-3g',
            redo_scf=True)

        self.wf = SlaterJastrow(mol,
                                kinetic='auto',
                                configs='ground_state',
                                jastrow_kernel=FullyConnectedJastrowKernel)

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.nbatch = 10
        self.pos = 1E-2 * torch.as_tensor(np.random.rand(
            self.nbatch, self.wf.nelec*3))
        self.pos.requires_grad = True

    def test_forward(self):
        wfvals = self.wf(self.pos)

    def test_antisymmetry(self):
        """Test that the wf values are antisymmetric
        wrt exchange of 2 electrons of same spin."""
        wfvals_ref = self.wf(self.pos)

        if self.wf.nelec < 4:
            print(
                'Warning : antisymmetry cannot be tested with \
                    only %d electrons' % self.wf.nelec)
            return

        # test spin up
        pos_xup = self.pos.clone()
        perm_up = list(range(self.wf.nelec))
        perm_up[0] = 1
        perm_up[1] = 0
        pos_xup = pos_xup.reshape(self.nbatch, self.wf.nelec, 3)
        pos_xup = pos_xup[:, perm_up, :].reshape(
            self.nbatch, self.wf.nelec*3)

        wfvals_xup = self.wf(pos_xup)
        assert(torch.allclose(wfvals_ref, -1*wfvals_xup))

    def test_grad_mo(self):
        """Gradients of the MOs."""

        mo = self.wf.pos2mo(self.pos)
        dmo = self.wf.pos2mo(self.pos, derivative=1)

        dmo_grad = grad(
            mo,
            self.pos,
            grad_outputs=torch.ones_like(mo))[0]

        gradcheck(self.wf.pos2mo, self.pos)

        assert(torch.allclose(dmo.sum(), dmo_grad.sum()))
        assert(torch.allclose(dmo.sum(-1),
                              dmo_grad.view(self.nbatch, self.wf.nelec, 3).sum(-1)))

    def test_hess_mo(self):
        """Hessian of the MOs."""
        val = self.wf.pos2mo(self.pos)

        d2val_grad = hess(val, self.pos)
        d2val = self.wf.pos2mo(self.pos, derivative=2)

        assert(torch.allclose(d2val.sum(), d2val_grad.sum()))

        assert(torch.allclose(d2val.sum(-1).sum(-1),
                              d2val_grad.view(self.nbatch, self.wf.nelec, 3).sum(-1).sum(-1)))

        assert(torch.allclose(d2val.sum(-1),
                              d2val_grad.view(self.nbatch, self.wf.nelec, 3).sum(-1)))

    def test_local_energy(self):

        self.wf.kinetic_energy = self.wf.kinetic_energy_autograd
        eloc_auto = self.wf.local_energy(self.pos)

        self.wf.kinetic_energy = self.wf.kinetic_energy_autograd
        eloc_jac = self.wf.local_energy(self.pos)

        assert torch.allclose(
            eloc_auto.data, eloc_jac.data, rtol=1E-4, atol=1E-4)

    def test_kinetic_energy(self):

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)

        assert torch.allclose(
            eauto.data, ejac.data, rtol=1E-4, atol=1E-4)

    def test_gradients_wf(self):

        grads = self.wf.gradients_jacobi(self.pos)
        grad_auto = self.wf.gradients_autograd(self.pos)

        assert torch.allclose(grads, grad_auto)

        grads = grads.reshape(10, self.wf.nelec, 3)
        grad_auto = grad_auto.reshape(10, self.wf.nelec, 3)
        assert(torch.allclose(grads, grad_auto))

    def test_gradients_pdf(self):

        grads_pdf = self.wf.gradients_jacobi(self.pos, pdf=True)
        grads_auto = self.wf.gradients_autograd(self.pos, pdf=True)

        assert torch.allclose(grads_pdf, grads_auto)
Ejemplo n.º 2
0
class TestOrbitalWF(unittest.TestCase):

    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(
            atom='Li 0 0 0; H 0 0 1.',
            unit='bohr',
            calculator='pyscf',
            basis='sto-3g',
            redo_scf=True)

        self.wf = SlaterJastrow(mol,
                                kinetic='auto',
                                include_all_mo=True,
                                configs='cas(2,2)')

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight

        self.nbatch = 10
        self.pos = torch.Tensor(
            np.random.rand(self.nbatch, mol.nelec*3))
        self.pos.requires_grad = True

    def test_forward(self):

        wfvals = self.wf(self.pos)

        ref = torch.Tensor([[0.0522],
                            [0.0826],
                            [0.0774],
                            [0.1321],
                            [0.0459],
                            [0.0421],
                            [0.0551],
                            [0.0764],
                            [0.1164],
                            [0.2506]])
        # assert torch.allclose(wfvals.data, ref, rtol=1E-4, atol=1E-4)

    def test_antisymmetry(self):
        """Test that the wf values are antisymmetric
        wrt exchange of 2 electrons of same spin."""
        wfvals_ref = self.wf(self.pos)

        if self.wf.nelec < 4:
            print(
                'Warning : antisymmetry cannot be tested with \
                    only %d electrons' % self.wf.nelec)
            return

        # test spin up
        pos_xup = self.pos.clone()
        perm_up = list(range(self.wf.nelec))
        perm_up[0] = 1
        perm_up[1] = 0
        pos_xup = pos_xup.reshape(self.nbatch, self.wf.nelec, 3)
        pos_xup = pos_xup[:, perm_up, :].reshape(
            self.nbatch, self.wf.nelec*3)

        wfvals_xup = self.wf(pos_xup)
        assert(torch.allclose(wfvals_ref, -1*wfvals_xup))

        # test spin down
        pos_xdn = self.pos.clone()
        perm_dn = list(range(self.wf.nelec))
        perm_dn[self.wf.mol.nup-1] = self.wf.mol.nup
        perm_dn[self.wf.mol.nup] = self.wf.mol.nup-1
        pos_xdn = pos_xdn.reshape(self.nbatch, self.wf.nelec, 3)
        pos_xdn = pos_xdn[:, perm_up, :].reshape(
            self.nbatch, self.wf.nelec*3)

        wfvals_xdn = self.wf(pos_xdn)
        assert(torch.allclose(wfvals_ref, -1*wfvals_xdn))

    def test_grad_mo(self):
        """Gradients of the MOs."""

        mo = self.wf.pos2mo(self.pos)
        dmo = self.wf.pos2mo(self.pos, derivative=1)

        dmo_grad = grad(
            mo,
            self.pos,
            grad_outputs=torch.ones_like(mo))[0]

        gradcheck(self.wf.pos2mo, self.pos)

        assert(torch.allclose(dmo.sum(), dmo_grad.sum()))
        assert(torch.allclose(dmo.sum(-1),
                              dmo_grad.view(10, self.wf.nelec, 3).sum(-1)))

    def test_hess_mo(self):
        """Hessian of the MOs."""
        val = self.wf.pos2mo(self.pos)

        d2val_grad = hess(val, self.pos)
        d2val = self.wf.pos2mo(self.pos, derivative=2)

        assert(torch.allclose(d2val.sum(), d2val_grad.sum()))

        assert(torch.allclose(d2val.sum(-1).sum(-1),
                              d2val_grad.view(10, self.wf.nelec, 3).sum(-1).sum(-1)))

        assert(torch.allclose(d2val.sum(-1),
                              d2val_grad.view(10, self.wf.nelec, 3).sum(-1)))

    def test_local_energy(self):

        self.wf.kinetic_energy = self.wf.kinetic_energy_autograd
        eloc_auto = self.wf.local_energy(self.pos)

        self.wf.kinetic_energy = self.wf.kinetic_energy_autograd
        eloc_jac = self.wf.local_energy(self.pos)

        ref = torch.Tensor([[-1.6567],
                            [-0.8790],
                            [-2.8136],
                            [-0.3644],
                            [-0.4477],
                            [-0.2709],
                            [-0.6964],
                            [-0.3993],
                            [-0.4777],
                            [-0.0579]])

        # assert torch.allclose(
        #     eloc_auto.data, ref, rtol=1E-4, atol=1E-4)

        assert torch.allclose(
            eloc_auto.data, eloc_jac.data, rtol=1E-4, atol=1E-4)

    def test_kinetic_energy(self):

        eauto = self.wf.kinetic_energy_autograd(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)

        ref = torch.Tensor([[0.6099],
                            [0.6438],
                            [0.6313],
                            [2.0512],
                            [0.0838],
                            [0.2699],
                            [0.5190],
                            [0.3381],
                            [1.8489],
                            [5.2226]])

        # assert torch.allclose(
        #     ejac.data, ref, rtol=1E-4, atol=1E-4)

        assert torch.allclose(
            eauto.data, ejac.data, rtol=1E-4, atol=1E-4)

    def test_gradients_wf(self):

        grads = self.wf.gradients_jacobi(self.pos)
        grad_auto = self.wf.gradients_autograd(self.pos)
        assert torch.allclose(grads, grad_auto)

    def test_gradients_pdf(self):

        grads_pdf = self.wf.gradients_jacobi(self.pos, pdf=True)
        grads_auto = self.wf.gradients_autograd(self.pos, pdf=True)

        assert torch.allclose(grads_pdf, grads_auto)
Ejemplo n.º 3
0
class TestCompareSlaterJastrowOrbitalDependentBackFlow(unittest.TestCase):
    def setUp(self):

        torch.manual_seed(101)
        np.random.seed(101)

        set_torch_double_precision()

        # molecule
        mol = Molecule(atom='Li 0 0 0; H 0 0 3.015',
                       unit='bohr',
                       calculator='pyscf',
                       basis='sto-3g',
                       redo_scf=True)

        self.wf = SlaterJastrowBackFlow(mol,
                                        kinetic='jacobi',
                                        include_all_mo=True,
                                        configs='single_double(2,2)',
                                        backflow_kernel=BackFlowKernelInverse,
                                        orbital_dependent_backflow=True)

        for ker in self.wf.ao.backflow_trans.backflow_kernel.orbital_dependent_kernel:
            ker.weight.data *= 0

        self.wf_ref = SlaterJastrow(mol,
                                    kinetic='jacobi',
                                    include_all_mo=True,
                                    configs='single_double(2,2)')

        self.random_fc_weight = torch.rand(self.wf.fc.weight.shape)
        self.wf.fc.weight.data = self.random_fc_weight
        self.wf_ref.fc.weight.data = self.random_fc_weight

        self.nbatch = 5
        self.pos = torch.Tensor(np.random.rand(self.nbatch, self.wf.nelec * 3))
        self.pos.requires_grad = True

    def test_forward(self):
        """Check that backflow give same results as normal SlaterJastrow."""
        wf_val = self.wf(self.pos)
        wf_val_ref = self.wf_ref(self.pos)

        assert (torch.allclose(wf_val, wf_val_ref))

    def test_jacobian_mo(self):
        """Check that backflow give same results as normal SlaterJastrow."""

        dmo = self.wf.pos2mo(self.pos, derivative=1)
        dmo_ref = self.wf_ref.pos2mo(self.pos, derivative=1)
        assert (torch.allclose(dmo.sum(0), dmo_ref))

    def test_hess_mo(self):
        """Check that backflow give same results as normal SlaterJastrow."""
        d2ao = self.wf.ao(self.pos, derivative=2, sum_hess=False)
        d2val = self.wf.ao2mo(d2ao)

        d2ao_ref = self.wf_ref.ao(self.pos, derivative=2, sum_hess=True)
        d2val_ref = self.wf_ref.ao2mo(d2ao_ref)
        assert (torch.allclose(d2val_ref, d2val.sum(0)))

    def test_grad_wf(self):
        pass

    def test_local_energy(self):

        self.wf.kinetic_energy = self.wf.kinetic_energy_jacobi
        eloc_jac = self.wf.local_energy(self.pos)

        self.wf_ref.kinetic_energy = self.wf_ref.kinetic_energy_jacobi
        eloc_jac_ref = self.wf_ref.local_energy(self.pos)

        assert torch.allclose(eloc_jac_ref.data,
                              eloc_jac.data,
                              rtol=1E-4,
                              atol=1E-4)

    def test_kinetic_energy(self):

        ejac_ref = self.wf_ref.kinetic_energy_jacobi(self.pos)
        ejac = self.wf.kinetic_energy_jacobi(self.pos)

        assert torch.allclose(ejac_ref.data, ejac.data, rtol=1E-4, atol=1E-4)