Ejemplo n.º 1
0
def get_representations_fchl(atoms, coordinates_list):

    replist = []

    for coordinates in coordinates_list:
        rep = fchl.generate_representation(coordinates,
                                           atoms,
                                           max_size=30,
                                           cut_distance=10**6)
        replist.append(rep)

    return replist
Ejemplo n.º 2
0
def test_krr_fchl_atomic():

    test_dir = os.path.dirname(os.path.realpath(__file__))

    # Parse file containing PBE0/def2-TZVP heats of formation and xyz filenames
    data = get_energies(test_dir + "/data/hof_qm7.txt")

    # Generate a list of qml.Compound() objects"
    mols = []

    for xyz_file in sorted(data.keys())[:10]:

        # Initialize the qml.Compound() objects
        mol = qml.Compound(xyz=test_dir + "/qm7/" + xyz_file)

        # Associate a property (heat of formation) with the object
        mol.properties = data[xyz_file]

        # This is a Molecular Coulomb matrix sorted by row norm
        mol.representation = generate_representation(mol.coordinates, \
                                mol.nuclear_charges, cut_distance=1e6)
        mols.append(mol)

    X = np.array([mol.representation for mol in mols])

    # Set hyper-parameters
    sigma = 2.5

    K = get_local_symmetric_kernels(X, [sigma])[0]

    K_test = np.zeros((len(mols), len(mols)))

    for i, Xi in enumerate(X):
        for j, Xj in enumerate(X):

            K_atomic = get_atomic_kernels(Xi[:mols[i].natoms],
                                          Xj[:mols[j].natoms], [sigma])[0]
            K_test[i, j] = np.sum(K_atomic)

            assert np.invert(np.all(
                np.isnan(K_atomic))), "FCHL atomic kernel contains NaN"

            if (i == j):
                K_atomic_symmetric = get_atomic_symmetric_kernels(
                    Xi[:mols[i].natoms], [sigma])[0]
                assert np.allclose(K_atomic, K_atomic_symmetric
                                   ), "Error in FCHL symmetric atomic kernels"
                assert np.invert(np.all(np.isnan(K_atomic_symmetric))
                                 ), "FCHL atomic symmetric kernel contains NaN"

    assert np.allclose(K, K_test), "Error in FCHL atomic kernels"
Ejemplo n.º 3
0
def unique(atoms, coordinates_list, method="rmsd", threshold=None):
    """

    @param
        coordinates_list
        method

    @return
        unique_list

    """

    unique_list = [coordinates_list[0]]
    idx_list = [0]

    if method == "qml":
        replist = []

        for coordinates in coordinates_list:
            rep = fchl.generate_representation(coordinates,
                                               atoms,
                                               max_size=20,
                                               cut_distance=10**6)
            replist.append(rep)

        replist = np.array(replist)

        # fchl uniqueness
        sigmas = [0.625, 1.25, 2.5, 5.0, 10.0]
        sigmas = [0.8]
        fchl_kernels = fchl.get_global_symmetric_kernels(
            replist,
            kernel_args={"sigma": sigmas},
            cut_distance=10**6,
            alchemy="off")
        idx_list = unique_from_kernel(fchl_kernels[0])

    elif method == "rmsd":

        threshold = 0.004

        for i, coordinates in enumerate(coordinates_list):
            if not exists(unique_list, coordinates):
                unique_list.append(coordinates)
                idx_list.append(i)

    return idx_list
Ejemplo n.º 4
0
def get_representations_fchl(charge_list, coordinates_list, parameters):

    nmax = parameters['nmax']
    cut_distance = parameters['cut_distance']

    rep_list = []

    for atoms, coordinates in zip(charge_list, coordinates_list):
        rep = qml_fchl.generate_representation(
            coordinates,
            atoms,
            max_size=nmax,
            neighbors=nmax,
            cut_distance=cut_distance)
        rep_list.append(rep)

    rep_list = np.array(rep_list)

    return rep_list
Ejemplo n.º 5
0
def get_fchl_representations(atoms_list,
                             coordinates_list,
                             nmax,
                             cut_distance=1e6):

    rep_list = []

    charge_list = []
    for atoms in atoms_list:
        charge_list.append([get_atom(atom) for atom in atoms])

    for atoms, coordinates in zip(charge_list, coordinates_list):
        rep = fchl.generate_representation(coordinates,
                                           atoms,
                                           max_size=nmax,
                                           neighbors=nmax,
                                           cut_distance=cut_distance)
        rep_list.append(rep)

    rep_list = np.array(rep_list)

    return rep_list
Ejemplo n.º 6
0
trainset = open('/ihome/ghutchison/dlf57/ml-benchmark/train-ani.pkl', 'rb')
anitrain = pickle.load(trainset)

reps = []
energies = []
for ani in anitrain:
    try:
        coords = ani['coordinates']
        elements = ani['species']
        energy = ani['energy']
        nuc = []
        for k in range(len(elements)):
            at_num = __nuc['{}'.format(elements[k])]
            nuc.append(at_num)

        rep = generate_representation(coords, nuc, max_size=45)
        reps.append(rep)
        energies.append(energy)
    except:
        print(ani['molecule'])
        print(ani['species'])
        print(ani['coordinates'])
        print(ani['energy'])

X = np.array(reps)[:5000]
y = np.array(energies)[:5000]

sigma = 2.5
K = get_local_kernels(X, X, [sigma], cut_distance=10.0)[0]
K[np.diag_indices_from(K)] += 1e-8
Ejemplo n.º 7
0
def test_fchl_local_periodic():

    nuclear_charges = [
        np.array([
            13, 13, 58, 58, 58, 58, 58, 58, 16, 16, 16, 16, 16, 16, 16, 16, 16,
            16, 16, 16, 16, 16, 23, 23
        ]),
        np.array([
            34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 73, 73, 73, 73, 81,
            81, 81, 81
        ]),
        np.array([48, 8, 8, 8, 8, 8, 8, 51, 51]),
        np.array([
            16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
            16, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
            30, 30
        ]),
        np.array([58, 58, 8, 8, 8, 8, 8, 8, 8, 8, 23, 23])
    ]

    cells = np.array([[[1.01113290e+01, -1.85000000e-04, 0.00000000e+00],
                       [-5.05582400e+00, 8.75745400e+00, 0.00000000e+00],
                       [0.00000000e+00, 0.00000000e+00, 6.15100100e+00]],
                      [[9.672168, 0., 0.], [0., 3.643786, 0.],
                       [0., 0., 14.961818]],
                      [[5.28208000e+00, -1.20000000e-05, 1.50000000e-05],
                       [-2.64105000e+00, 4.57443400e+00, -3.00000000e-05],
                       [1.40000000e-05, -2.40000000e-05, 4.77522000e+00]],
                      [[-1.917912, 3.321921, 0.], [3.835824, 0., 0.],
                       [1.917912, -1.107307, -56.423542]],
                      [[3.699168, 3.699168, -3.255938],
                       [3.699168, -3.699168, 3.255938],
                       [-3.699168, -3.699168, -3.255938]]])

    fractional_coordinates = [
        [[0.6666706, 0.33333356, 0.15253127],
         [0.33332896, 0.66666655, 0.65253119],
         [0.14802736, 0.375795, 0.23063888],
         [0.62422269, 0.77225019, 0.23063888],
         [0.22775607, 0.85196133, 0.23063888],
         [0.77224448, 0.14803879, 0.7306388],
         [0.37577687, 0.22774993,
          0.7306388], [0.8519722, 0.62420512, 0.7306388],
         [0.57731818, 0.47954083, 0.0102715],
         [0.52043884, 0.09777799, 0.01028288],
         [0.90211803, 0.4226259, 0.01032677],
         [0.33335216, 0.6666734, 0.01482035],
         [0.90959766, 0.77585201, 0.30637615],
         [0.86626106, 0.09040873, 0.3063794],
         [0.22415808, 0.13374794, 0.30638265],
         [0.42268138, 0.52045928, 0.51027142],
         [0.47956114, 0.90222098, 0.5102828],
         [0.09788153, 0.57737421, 0.51032669],
         [0.6666474, 0.33332671, 0.51482027],
         [0.09040133, 0.22414696, 0.80637769],
         [0.13373793, 0.90959025, 0.80637932],
         [0.77584247, 0.86625217, 0.80638257], [0., 0., 0.05471142],
         [0., 0., 0.55471134]],
        [[0.81615001, 0.75000014, 0.00116296],
         [0.52728096, 0.25000096, 0.0993275],
         [0.24582596, 0.75000014, 0.2198563],
         [0.74582658, 0.75000014, 0.28014376],
         [0.02728137, 0.25000096, 0.40067257],
         [0.31615042, 0.75000014, 0.49883711],
         [0.68384978, 0.25000096, 0.50116236],
         [0.97271884, 0.75000014, 0.59932757],
         [0.25417362, 0.25000096, 0.71985637],
         [0.75417321, 0.25000096, 0.78014383],
         [0.47271925, 0.75000014, 0.90067263],
         [0.1838502, 0.25000096, 0.99883717],
         [0.33804831, 0.75000014, 0.07120258],
         [0.83804789, 0.75000014, 0.42879749],
         [0.16195232, 0.25000096, 0.57120198],
         [0.6619519, 0.25000096, 0.92879756],
         [0.98245812, 0.25000096, 0.17113829],
         [0.48245853, 0.25000096, 0.32886177],
         [0.51754167, 0.75000014, 0.67113836],
         [0.01754209, 0.75000014, 0.82886184]],
        [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
         [3.66334233e-01, 1.96300000e-07, 2.70922493e-01],
         [6.33665197e-01, 6.33666177e-01, 2.70923540e-01],
         [3.62000000e-08, 3.66333081e-01, 2.70923851e-01],
         [6.70000000e-09, 6.33664733e-01, 7.29076149e-01],
         [6.33664135e-01, 9.99998055e-01, 7.29076460e-01],
         [3.66336157e-01, 3.66334260e-01, 7.29077507e-01],
         [3.33333635e-01, 6.66667395e-01, 4.99998953e-01],
         [6.66667720e-01, 3.33333042e-01, 5.00000000e-01]],
        [[0.3379644, 0.66203644, 0.01389048],
         [0.02316309, 0.97683587, 0.06948926],
         [0.70833843, 0.29165976, 0.12501892],
         [0.39352259, 0.60647824, 0.18056506],
         [0.74538243, 0.25461577, 0.2361509],
         [0.09722803, 0.90277092, 0.2916841],
         [0.44907919, 0.55092165,
          0.34723485], [0.8009281, 0.1990701, 0.4027879],
         [0.15278103, 0.84721793, 0.45834308],
         [0.83797345, 0.16202475, 0.51392396],
         [0.52315813, 0.4768427, 0.56947169],
         [0.20833916, 0.7916598, 0.62501748],
         [0.89352691, 0.10647128, 0.68058436],
         [0.57870427, 0.42129656, 0.73611012],
         [0.93056329, 0.06943491, 0.79169347],
         [0.28241704, 0.71758191, 0.84725114],
         [0.63426956, 0.36573128, 0.90280596],
         [0.98611817, 0.01388002, 0.95835813], [0., 0., 0.],
         [0.35185434, 0.64814649, 0.05556032],
         [0.03704151, 0.96295744, 0.11112454],
         [0.72221887, 0.27777932, 0.16666022],
         [0.40741437, 0.59258647, 0.22224039],
         [0.75926009, 0.24073811, 0.27778387],
         [0.11111195, 0.888887, 0.33333586],
         [0.46296234, 0.53703849, 0.38888431],
         [0.81480954, 0.18518866, 0.44443222],
         [0.16667233, 0.83332662, 0.500017],
         [0.85185117, 0.14814703, 0.55555711],
         [0.53704217, 0.46295866, 0.61112381],
         [0.22222196, 0.777777, 0.66666587],
         [0.90740847, 0.09258972, 0.72222903],
         [0.59259328, 0.40740756,
          0.77777712], [0.94444213, 0.05555607, 0.83333],
         [0.29630132, 0.70369764, 0.88890396],
         [0.64815247, 0.35184836, 0.94445471]],
        [[0., 0., 0.], [0.75000042, 0.50000027, 0.25000015],
         [0.15115386, 0.81961403, 0.33154037],
         [0.51192691, 0.18038651, 0.3315404],
         [0.08154025, 0.31961376, 0.40115401],
         [0.66846017, 0.81961403, 0.48807366],
         [0.08154025, 0.68038678, 0.76192703],
         [0.66846021, 0.18038651, 0.84884672],
         [0.23807355, 0.31961376, 0.91846033],
         [0.59884657, 0.68038678, 0.91846033], [0.50000031, 0., 0.50000031],
         [0.25000015, 0.50000027, 0.75000042]]
    ]

    n = 5

    X = np.array([
        generate_representation(fractional_coordinates[i],
                                nuclear_charges[i],
                                cell=cells[i],
                                max_size=36,
                                neighbors=200,
                                cut_distance=7.0) for i in range(5)
    ])

    sigmas = [2.5]
    K = get_local_symmetric_kernels(X, sigmas, cut_distance=7.0, cut_start=0.7)

    K_ref = np.array([
        [530.03184304, 435.65196293, 198.61245535, 782.49428327, 263.53562172],
        [435.65196293, 371.35281119, 163.83766549, 643.99777576, 215.04338938],
        [198.61245535, 163.83766549, 76.12134823, 295.02739281, 99.89595704],
        [
            782.49428327, 643.99777576, 295.02739281, 1199.61736141,
            389.31169487
        ],
        [263.53562172, 215.04338938, 99.89595704, 389.31169487, 133.36920188]
    ])

    assert np.allclose(K, K_ref), "Error in periodic FCHL"
Ejemplo n.º 8
0
def test_krr_fchl_global():

    test_dir = os.path.dirname(os.path.realpath(__file__))

    # Parse file containing PBE0/def2-TZVP heats of formation and xyz filenames
    data = get_energies(test_dir + "/data/hof_qm7.txt")

    # Generate a list of qml.Compound() objects"
    mols = []

    for xyz_file in sorted(data.keys())[:100]:

        # Initialize the qml.Compound() objects
        mol = qml.Compound(xyz=test_dir + "/qm7/" + xyz_file)

        # Associate a property (heat of formation) with the object
        mol.properties = data[xyz_file]

        # This is a Molecular Coulomb matrix sorted by row norm
        mol.representation = generate_representation(mol.coordinates, \
                                mol.nuclear_charges, cut_distance=1e6)
        mols.append(mol)

    # Shuffle molecules
    np.random.seed(666)
    np.random.shuffle(mols)

    # Make training and test sets
    n_test = len(mols) // 3
    n_train = len(mols) - n_test

    training = mols[:n_train]
    test = mols[-n_test:]

    X = np.array([mol.representation for mol in training])
    Xs = np.array([mol.representation for mol in test])

    # List of properties
    Y = np.array([mol.properties for mol in training])
    Ys = np.array([mol.properties for mol in test])

    # Set hyper-parameters
    sigma = 100.0
    llambda = 1e-8

    K_symmetric = get_global_symmetric_kernels(X, [sigma])[0]
    K = get_global_kernels(X, X, [sigma])[0]

    assert np.allclose(K,
                       K_symmetric), "Error in FCHL symmetric global kernels"
    assert np.invert(np.all(
        np.isnan(K_symmetric))), "FCHL global symmetric kernel contains NaN"
    assert np.invert(np.all(np.isnan(K))), "FCHL global kernel contains NaN"

    # Solve alpha
    K[np.diag_indices_from(K)] += llambda
    alpha = cho_solve(K, Y)

    # # Calculate prediction kernel
    Ks = get_global_kernels(Xs, X, [sigma])[0]
    assert np.invert(np.all(
        np.isnan(Ks))), "FCHL global testkernel contains NaN"

    Yss = np.dot(Ks, alpha)

    mae = np.mean(np.abs(Ys - Yss))
    assert abs(2 - mae) < 1.0, "Error in FCHL global kernel-ridge regression"
Ejemplo n.º 9
0
def calculate(charges_mike, coordinates_mike):

	global train_representations
	global train_displaced_representations
	global train_alphas
	
	global NMAX
	global CUT_DISTANCE
	global KERNEL_ARGS
	global DX
	
	print("before")
	
	print("mike charge", charges_mike)
	print("mike coord", coordinates_mike)
	print("mike lr", len(charges_mike))
	print("mike lo", len(coordinates_mike))
	#charges = [NUCLEAR_CHARGE[atom] for atom in atoms]
	#charges = np.array(charges)
	
	N = len(charges_mike)
	
	coordinates = np.zeros(N*3)
	charges = np.zeros(N, dtype=int)
	
	for i, coord in enumerate(coordinates_mike):
		coordinates[i] = coord
	
	for i, charge in enumerate(charges_mike):
		charges[i] = charge
	
	
	coordinates = coordinates.reshape((N,3))
	
	print("charges", charges)
	print("coord", coordinates)
	print("len charge", len(charges))
	print("len coord", len(coordinates))

	
	rep = generate_representation(coordinates, charges, max_size=NMAX, cut_distance=CUT_DISTANCE)
	disp_rep = generate_displaced_representations(coordinates, charges, max_size=NMAX, cut_distance=CUT_DISTANCE, dx=DX)

	list_rep = np.array([rep])
	list_disp_rep = np.array([disp_rep])

	# generate kernel
	kernel_energies, kernel_forces = get_kernel(
        train_representations,
        list_rep,
        train_displaced_representations,
        list_disp_rep)

	kernel_energies = kernel_energies[0]
	kernel_forces = kernel_forces[0]

	print("kernel shape", kernel_forces.shape)
	
	# predict
	energies = np.dot(kernel_energies.T, train_alphas)
	forces = np.dot(kernel_forces.T, train_alphas)
	
	print("after")
	print(energies[0], forces)
	
	return energies[0], forces
Ejemplo n.º 10
0
def main():


    read_model("data/butane")
    atoms, coordinates = rmsd.get_coordinates_xyz("data/butane/butane-1.xyz")

    energy, force = calculate(atoms, coordinates)

    print(energy)
    print(force)
	
    quit()


    description = """
"""

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('-f', '--filename', action='store', help='List of molecules', metavar='listfile')
    parser.add_argument('-m', '--model', action='store', help='Output model in npy format', metavar='file')
    args = parser.parse_args()


    # Load model
    PARAMETERS = np.load(args.model + ".parameters.npy")
    train_representations = np.load(args.model + ".representations.npy")
    train_displaced_representations = np.load(args.model + ".displaced_representations.npy")
    train_alphas = np.load(args.model + ".alphas.npy")


    # Get molecule filenames
    f = open(args.filename, 'r')
    molecules = f.readlines()
    molecules = [mol.strip() for mol in molecules]
    f.close()

    DIRECTORY = args.filename.split("/")
    DIRECTORY = "/".join(DIRECTORY[:-1]) + "/"

    # Init all the rep lists
    list_atoms = []
    list_charges = []
    list_coordinates = []
    list_energies = []
    list_forces = []
    list_rep = []
    list_disp_rep = []
    list_disp_rep5 = []


    # HYPER PARAMETERS
    CUT_DISTANCE = PARAMETERS.item().get('cut_distance')
    KERNEL_ARGS = PARAMETERS.item().get('kernel_args')
    DX = PARAMETERS.item().get('dx')
    NMAX = PARAMETERS.item().get('max_atoms')


    # read coordinates
    for filename in molecules:

        atoms, coordinates = rmsd.get_coordinates_xyz(DIRECTORY + filename + ".xyz")
        charges = [NUCLEAR_CHARGE[atom] for atom in atoms]

        rep = generate_representation(coordinates, charges, max_size=NMAX, cut_distance=CUT_DISTANCE)
        disp_rep = generate_displaced_representations(coordinates, charges, max_size=NMAX, cut_distance=CUT_DISTANCE, dx=DX)

        list_rep.append(rep)
        list_disp_rep.append(disp_rep)

        break


    list_rep = np.array(list_rep)
    list_disp_rep = np.array(list_disp_rep)
	
    # generate kernel
    kernel_energies, kernel_forces = get_kernel(
        train_representations,
        list_rep,
        train_displaced_representations,
        list_disp_rep,
		kernel_args=KERNEL_ARGS,
		dx=DX)

    kernel_energies = kernel_energies[0]
    kernel_forces = kernel_forces[0]


    # predict
    energies = np.dot(kernel_energies.T, train_alphas)
    forces = np.dot(kernel_forces.T, train_alphas)


    print(energies)
    print(forces)
Ejemplo n.º 11
0
def main():

    description = """
Based on a list of molecules, train a representation-set and alpha set.
Output the npy files
"""

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('-f',
                        '--filename',
                        action='store',
                        help='List of molecules',
                        metavar='listfile')
    parser.add_argument('-d',
                        '--dump',
                        action='store',
                        help='Output model in npy format',
                        metavar='file')

    parser.add_argument('--test', action='store_true')
    parser.add_argument('--optimize', action='store_true')

    args = parser.parse_args()

    # Get molecule filenames
    f = open(args.filename, 'r')
    molecules = f.readlines()
    molecules = [mol.strip() for mol in molecules]
    f.close()

    DIRECTORY = args.filename.split("/")
    DIRECTORY = "/".join(DIRECTORY[:-1]) + "/"

    # Init all the rep lists
    list_atoms = []
    list_charges = []
    list_coordinates = []
    list_energies = []
    list_forces = []
    list_rep = []
    list_disp_rep = []
    list_disp_rep5 = []

    # HYPER PARAMETERS
    CUT_DISTANCE = 1e6
    KERNEL_ARGS = {
        "verbose": False,
        "cut_distance": CUT_DISTANCE,
        "kernel": "gaussian",
        "kernel_args": {
            "sigma": [0.64],
        },
    }
    DX = 0.005

    # read coordinates
    for filename in molecules:

        atoms, coordinates = rmsd.get_coordinates_xyz(DIRECTORY + filename +
                                                      ".xyz")
        nuclear_charges = [NUCLEAR_CHARGE[atom] for atom in atoms]

        f = open(DIRECTORY + filename + ".energy", 'r')
        energy = next(f)
        energy = float(energy)

        force = []
        for line in f:
            force.append(line.split(","))
        force = np.array(force, dtype=float)

        list_atoms.append(atoms)
        list_charges.append(nuclear_charges)
        list_coordinates.append(coordinates)
        list_energies.append(energy)
        list_forces.append(force)

    # Calculate NMAX hyperprameter
    NMAX = [len(x) for x in list_atoms]
    NMAX = np.max(NMAX)

    # Save model parameters
    PARAMETERS = {
        "kernel_args": KERNEL_ARGS,
        "cut_distance": CUT_DISTANCE,
        "max_atoms": NMAX,
        "dx": DX
    }

    # Calculate representations
    for charges, coordinates in zip(list_charges, list_coordinates):

        rep = generate_representation(coordinates,
                                      charges,
                                      max_size=NMAX,
                                      cut_distance=CUT_DISTANCE)
        disp_rep = generate_displaced_representations(
            coordinates,
            charges,
            max_size=NMAX,
            cut_distance=CUT_DISTANCE,
            dx=DX)

        list_rep.append(rep)
        list_disp_rep.append(disp_rep)

    list_atoms = np.array(list_atoms)
    list_coordinates = np.array(list_coordinates)
    list_energies = np.array(list_energies)
    list_forces = np.array(list_forces)
    list_rep = np.array(list_rep)
    list_disp_rep = np.array(list_disp_rep)

    # Hack, easy way to normalize energies (same molecule)
    avg = np.sum(list_energies) / len(list_energies)
    list_energies -= avg

    # hatree / bohr to hatree / aangstroem
    list_forces *= 1.0 / 0.529177249

    # generate train / test views
    view_all = np.array(range(len(molecules)))
    # view_train, view_valid = np.split(view_all, 2)
    view_train = view_all

    # TODO cross-validation of hyper-parameter optimization

    # generate kernel
    kernel_train_energies, kernel_train_deriv = wrapper.get_kernel(
        list_rep[view_train],
        list_rep[view_train],
        list_disp_rep[view_train],
        list_disp_rep[view_train],
        dx=DX,
        kernel_args=KERNEL_ARGS)

    kernel_train_energies = kernel_train_energies[0]
    kernel_train_deriv = kernel_train_deriv[0]

    # generate alphas
    alphas = wrapper.get_alphas(kernel_train_energies, kernel_train_deriv,
                                list_energies[view_train],
                                list_forces[view_train])

    # dump the model
    np.save(args.dump + ".alphas", alphas)
    np.save(args.dump + ".representations", list_rep)
    np.save(args.dump + ".displaced_representations", list_disp_rep)
    np.save(args.dump + ".parameters", PARAMETERS)

    # self test
    if args.selftest:
        energy_valid = np.dot(kernel_train_energies.T, alphas)
        force_valid = np.dot(kernel_train_deriv.T, alphas)
        print(
            mae(list_energies[view_train], energy_valid) < 0.08,
            "Error in operator test energy")
        print(
            mae(list_forces[view_train].flatten(), force_valid) < 0.1,
            "Error in  operator test force")

    return