Ejemplo n.º 1
0
def test_pcm_fixed_weight_optimiser_fixed_alpha_weights_call_end_to_end(
        helpers):
    """
    Tests the full portfolio base class logic for carrying out
    rebalancing.

    TODO: DataHandler is mocked. A non-disk based data source
    should be utilised instead.
    """
    first_dt = pd.Timestamp('2019-01-01 15:00:00', tz=pytz.utc)
    asset_list = ['EQ:SPY', 'EQ:AGG', 'EQ:TLT', 'EQ:GLD']
    initial_funds = 1e6
    account_id = '1234'
    port_id = '1234'
    cash_buffer_perc = 0.05

    exchange = SimulatedExchange(first_dt)
    universe = StaticUniverse(asset_list)

    mock_asset_prices_first = {
        'EQ:SPY': 56.87,
        'EQ:AGG': 219.45,
        'EQ:TLT': 178.33,
        'EQ:GLD': 534.21
    }
    data_handler = Mock()
    data_handler.get_asset_latest_ask_price.side_effect = \
        lambda self, x: mock_asset_prices_first[x]

    broker = SimulatedBroker(first_dt,
                             exchange,
                             data_handler,
                             account_id,
                             initial_funds=initial_funds)
    broker.create_portfolio(port_id, 'Portfolio')
    broker.subscribe_funds_to_portfolio(port_id, initial_funds)

    order_sizer = DollarWeightedCashBufferedOrderSizeGeneration(
        broker, port_id, data_handler, cash_buffer_perc)
    optimiser = FixedWeightPortfolioOptimiser(data_handler)

    alpha_weights = {
        'EQ:SPY': 0.345,
        'EQ:AGG': 0.611,
        'EQ:TLT': 0.870,
        'EQ:GLD': 0.0765
    }
    alpha_model = FixedSignalsAlphaModel(alpha_weights)

    pcm = PortfolioConstructionModel(broker, port_id, universe, order_sizer,
                                     optimiser, alpha_model)

    result_first = pcm(first_dt)
    expected_first = [
        Order(first_dt, 'EQ:AGG', 1390),
        Order(first_dt, 'EQ:GLD', 71),
        Order(first_dt, 'EQ:SPY', 3029),
        Order(first_dt, 'EQ:TLT', 2436)
    ]
    helpers.assert_order_lists_equal(result_first, expected_first)
Ejemplo n.º 2
0
def test_create_zero_target_weight_vector(description, full_assets, expected):
    """
    Tests the _create_zero_target_weight_vector method of the
    PortfolioConstructionModel base class.
    """
    port_id = '1234'

    broker = Mock()
    universe = Mock()
    order_sizer = Mock()
    optimiser = Mock()

    pcm = PortfolioConstructionModel(broker, port_id, universe, order_sizer,
                                     optimiser)

    result = pcm._create_zero_target_weight_vector(full_assets)
    assert result == expected
Ejemplo n.º 3
0
def test_generate_rebalance_orders(helpers, description, target_portfolio,
                                   current_portfolio, expected):
    """
    Tests the _generate_rebalance_orders method of the
    PortfolioConstructionModel base class.
    """
    port_id = '1234'

    broker = Mock()
    universe = Mock()
    order_sizer = Mock()
    optimiser = Mock()

    pcm = PortfolioConstructionModel(broker, port_id, universe, order_sizer,
                                     optimiser)

    result = pcm._generate_rebalance_orders(SENTINEL_DT, target_portfolio,
                                            current_portfolio)
    helpers.assert_order_lists_equal(result, expected)
Ejemplo n.º 4
0
def test_obtain_full_asset_list(description, port_dict, uni_assets, expected):
    """
    Tests the _obtain_full_asset_list method of the
    PortfolioConstructionModel base class.
    """
    port_id = '1234'

    broker = Mock()
    broker.get_portfolio_as_dict.return_value = port_dict

    universe = Mock()
    universe.get_assets.return_value = uni_assets

    order_sizer = Mock()
    optimiser = Mock()

    pcm = PortfolioConstructionModel(broker, port_id, universe, order_sizer,
                                     optimiser)

    result = pcm._obtain_full_asset_list(SENTINEL_DT)
    assert result == expected
Ejemplo n.º 5
0
    def _initialise_models(self):
        """
        Initialise the various models for the quantitative
        trading strategy. This includes the portfolio
        construction and the execution.

        TODO: Add TransactionCostModel
        TODO: Ensure this is dynamically generated from config.
        """
        # Portfolio Construction
        order_sizer = DollarWeightedCashBufferedOrderSizeGeneration(
            self.broker,
            self.broker_portfolio_id,
            self.data_handler,
            cash_buffer_percentage=self.cash_buffer_percentage)
        optimiser = FixedWeightPortfolioOptimiser(
            data_handler=self.data_handler)
        self.portfolio_construction_model = PortfolioConstructionModel(
            self.broker,
            self.broker_portfolio_id,
            self.universe,
            order_sizer,
            optimiser,
            alpha_model=self.alpha_model,
            risk_model=self.risk_model,
            data_handler=self.data_handler)

        # Execution
        execution_algo = MarketOrderExecutionAlgorithm()
        self.execution_handler = ExecutionHandler(
            self.broker,
            self.broker_portfolio_id,
            self.universe,
            submit_orders=self.submit_orders,
            execution_algo=execution_algo,
            data_handler=self.data_handler)
Ejemplo n.º 6
0
    def _initialise_models(self, **kwargs):
        """
        Initialise the various models for the quantitative
        trading strategy. This includes the portfolio
        construction and the execution.

        TODO: Add TransactionCostModel
        TODO: Ensure this is dynamically generated from config.
        """
        # Determine the appropriate order sizing mechanism
        order_sizer = self._create_order_sizer(**kwargs)

        # TODO: Allow optimiser to be generated from config
        optimiser = FixedWeightPortfolioOptimiser(
            data_handler=self.data_handler)

        # Generate the portfolio construction
        self.portfolio_construction_model = PortfolioConstructionModel(
            self.broker,
            self.broker_portfolio_id,
            self.universe,
            order_sizer,
            optimiser,
            alpha_model=self.alpha_model,
            risk_model=self.risk_model,
            data_handler=self.data_handler)

        # Execution
        execution_algo = MarketOrderExecutionAlgorithm()
        self.execution_handler = ExecutionHandler(
            self.broker,
            self.broker_portfolio_id,
            self.universe,
            submit_orders=self.submit_orders,
            execution_algo=execution_algo,
            data_handler=self.data_handler)