Ejemplo n.º 1
0
def lineSegment(im, x0, x1=None, theta=None, w=2, l=12, H=200, ml=0):
    """ Plot half-line into image 

    >>> lineSegment(np.zeros( (160,240)), [60,40], [70,40], w=10, l=60)
    >>> lineSegment(np.zeros( (160,240)), [60,40], theta=np.deg2rad(20), w=10, l=60)

    """
    x0 = np.array(x0).flatten()
    if x1 is None:
        thetar = -theta
        dx = l
    else:
        x1 = np.array(x1).flatten()
        theta = x0 - x1
        theta = np.arctan2(theta[1], theta[0]) + np.pi
        thetar = -theta

        dx = np.linalg.norm(x0 - x1)

    xx0, yy0 = np.meshgrid(np.arange(im.shape[1]) - x0[0], np.arange(im.shape[0]) - x0[1])
    xx0 = xx0.astype(np.float32)
    yy0 = yy0.astype(np.float32)

    xxr = math.cos(thetar) * xx0 - math.sin(thetar) * yy0
    yyr = math.sin(thetar) * xx0 + math.cos(thetar) * yy0
    yyr = pgeometry.signedmin(yyr, w / 2.)

    data = H * np.cos((np.pi / w) * yyr) * (pgeometry.smoothstep(xxr, ml, 4)) * (1 - pgeometry.smoothstep(xxr, dx, 4))

    im += data
    return im
Ejemplo n.º 2
0
def semiLine(im, x0, theta, w, l, H=200, dohalf=True):
    """ Plot half-line into image 

    Args:
        im (array)
        x0 (array): starting point of semi-line
        theta (float): angle in radians
        w (float): width
        l (float): length of line segment
        H (float): intensity of line segment
        dohalf (bool): add smoothing?

    >>> im=semiLine(np.zeros( (160,240)), [60,40], theta=np.deg2rad(20), w=10, l=60)
    >>> plt.imshow(im)

    """
    thetar = -theta
    xx0, yy0 = np.meshgrid(np.arange(im.shape[1]) - x0[0], np.arange(im.shape[0]) - x0[1])
    xx0 = xx0.astype(np.float32)
    yy0 = yy0.astype(np.float32)

    xxr = math.cos(thetar) * xx0 - math.sin(thetar) * yy0
    yyr = math.sin(thetar) * xx0 + math.cos(thetar) * yy0
    yyr = pgeometry.signedmin(yyr, w / 2.)

    data = H * np.cos((np.pi / w) * yyr)
    if dohalf:
        data *= (pgeometry.smoothstep(xxr, 0, 10))

    im += data
    return im
Ejemplo n.º 3
0
def costFunctionLine(pp,
                     imx,
                     istep,
                     maxshift=12,
                     verbose=0,
                     fig=None,
                     maxangle=np.deg2rad(70),
                     ksizemv=12,
                     dthr=8,
                     dwidth=3,
                     alldata=None,
                     px=None):
    """ Cost function for line fitting

        pp (list or array): line parameters
        imx (numpy array): image to fit to
        istep (float)
        px (array): translational offset to operate from

    """
    istepmodel = .5
    samplesize = [
        int(imx.shape[1] * istep / istepmodel),
        int(imx.shape[0] * istep / istepmodel)
    ]

    LW = 2  # [mV]
    LL = 15  # [mV]

    H = costFunctionLine.scaling0.copy()
    H[0, 0] = istep / istepmodel
    H[1, 1] = istep / istepmodel

    #patch=linetools.sampleImage(im, pp, samplesize, fig=11, clearfig=True, nrsub=1)
    dsize = (samplesize[0], samplesize[1])
    patch = cv2.warpPerspective(imx.astype(np.float32), H, dsize, None,
                                (cv2.INTER_LINEAR), cv2.BORDER_CONSTANT, -1)
    pm0 = np.array(pp[0:2]).reshape((1, 2)) / istepmodel  # [pixel]
    if px is None:
        pxpatch = [patch.shape[1] / 2, patch.shape[0] / 2]
    else:
        pxpatch = (float(istep) / istepmodel) * np.array(px)
    pm = pm0 + pxpatch
    #modelpatch, cdata=createCross(param, samplesize, centermodel=False, istep=istepmodel, verbose=0)

    lowv = np.percentile(imx, 1)
    highv = np.percentile(imx, 95)
    theta = pp[2]

    if verbose:
        print('costFunctionLine: sample line patch: lowv %.1f, highv %.1f' %
              (lowv, highv))
        # print(px)
    linepatch = lowv + np.zeros((samplesize[1], samplesize[0]))
    lineSegment(linepatch,
                pm,
                theta=pp[2],
                w=LW / istepmodel,
                l=LL / istepmodel,
                H=highv - lowv,
                ml=-6 / istepmodel)
    #plt.figure(99); plt.clf(); plt.imshow(lineseg, interpolation='nearest'); plt.colorbar()
    #plt.figure(99); plt.clf(); plt.imshow(linepatch-lineseg, interpolation='nearest'); plt.colorbar()
    #plt.figure(99); plt.clf(); plt.imshow(linepatch, interpolation='nearest'); plt.colorbar()
    dd = patch - (linepatch)
    cost = np.linalg.norm(dd)
    cost0 = cost

    if 1:
        ddx0 = np.linalg.norm(pm0)  # [pixel]
        ddx = np.linalg.norm(pm0)  # [pixel]
        if verbose:
            print(
                'costFunctionLine: calculate additonal costs: dist %.1f [mV]' %
                (ddx * istepmodel))

        ddx = pmatlab.smoothstep(ddx, dthr / istepmodel, dwidth / istepmodel)
        if verbose >= 2:
            print('  ddx: %.3f, thr %.3f' % (ddx, dthr / istepmodel))
        cost += 100000 * ddx
    #cost = sLimits(cost, plocal, pm, maxshift, maxangle)

    if fig is not None:
        pmatlab.cfigure(fig)
        plt.clf()
        plt.imshow(patch, interpolation='nearest')
        plt.title('patch: cost %.2f, dist %.1f' % (cost, ddx0 * istep))
        plt.colorbar()
        pm = pm.flatten()
        #plt.plot(pm0.flatten()[0], pm0.flatten()[1], 'dk', markersize=12, label='initial starting point?')
        plt.plot(pm[0], pm[1], '.g', markersize=24, label='fitted point')
        plt.plot(pxpatch[0],
                 pxpatch[1],
                 '.m',
                 markersize=18,
                 label='offset for parameters')

        qq = np.array(
            pm.reshape(2, 1) + (LL / istepmodel) *
            pmatlab.rot2D(theta).dot(np.array([[1, -1], [0, 0]])))

        plt.plot(qq[0, :], qq[1, :], '--k', markersize=24, linewidth=2)

        # print(pm)
        plt.axis('image')
        #       plt.colorbar()

        pmatlab.cfigure(fig + 1)
        plt.clf()
        plt.imshow(linepatch, interpolation='nearest')
        plt.title('line patch')
        plt.plot(px[0], px[1], '.m', markersize=24)
        plt.axis('image')
        plt.colorbar()
        pmatlab.tilefigs([fig, fig + 1])

        if verbose >= 2:
            pmatlab.cfigure(fig + 2)
            plt.clf()
            xx = np.arange(0, 20, .1)
            xxstep = istepmodel * pmatlab.smoothstep(
                xx / istepmodel, dthr / istepmodel, (1 / dwidth) / istepmodel)
            plt.plot(xx, xxstep, '.-b', label='distance step')
            plt.xlabel('Distance [mV]')
            plt.legend()

    if verbose:
        print('costFucntion: cost: base %.2f -> final %.2f' % (cost0, cost))
        if verbose >= 2:
            ww = np.abs(dd).mean(axis=0)

            print('costFunction: dd %s ' % ww)

    return cost