Ejemplo n.º 1
0
    def getShortestPath(self, start_state, goal, set_velz=None):
        traj = quadtraj.RapidTrajectory(
            start_state.position.to_numpy_array().tolist(),
            start_state.linear_velocity.to_numpy_array().tolist(),
            start_state.linear_acceleration.to_numpy_array().tolist(),
            self.gravity)

        goal_pos = goal[:3]
        traj.set_goal_position(goal_pos)
        distance = np.linalg.norm(start_state.position.to_numpy_array() -
                                  np.array(goal_pos))
        traj.set_goal_acceleration([0, 0, 0])
        if set_velz:
            print("Special case with set vz: ", set_velz * goal[3:])
            traj.set_goal_velocity(set_velz * goal[3:])
        # traj.set_goal_acceleration_in_axis(2,0)

        # print("PLANNING: Start: ", start_state.position.to_numpy_array().tolist())
        # print("PLANNING: Start: ", start_state.linear_velocity.to_numpy_array().tolist())
        # print("PLANNING: Start: ", start_state.linear_acceleration.to_numpy_array().tolist())
        # print("PLANNING: g: ", self.gravity)
        # print("PLANNING: Goal: ", goal_pos)
        # print("PLANNING: Limits: ", self.fmin, self.fmax, self.wmax, self.minTimeSec)

        return self.binaryCompute(traj, distance)
Ejemplo n.º 2
0
 def givemetraj(self, pos0, vel0, acc0, posf, velf, accf, Tf):
     traj = quadtraj.RapidTrajectory(pos0, vel0, acc0, self.gravity)
     traj.set_goal_position(posf)
     traj.set_goal_velocity(velf)
     traj.set_goal_acceleration(accf)
     # Run the algorithm, and generate the trajectory.
     traj.generate(Tf)
     return traj
Ejemplo n.º 3
0
 def get_paths_list(self, pos_s,vec_s,acc_s, pos_g,vec_g,acc_g = [0,0,0],T_duration = 0):
     if T_duration == 0 :
         print ('Wrong duration time!!')
         return
     traj = quadtraj.RapidTrajectory(pos_s, vec_s, acc_s, self.gravity)
     traj.set_goal_position(pos_g)
     traj.set_goal_velocity(vec_g)
     traj.set_goal_acceleration(acc_g)
     traj.generate(T_duration)
     floorPoint  = [0,0,0]  # a point on the floor
     floorNormal = [0,0,1]  # we want to be in this direction of the point (upwards)
     positionFeasible = traj.check_position_feasibility(floorPoint, floorNormal)
     #print("Position feasibility result: ", quadtraj.StateFeasibilityResult.to_string(positionFeasible), "(", positionFeasible, ")")
     return traj
Ejemplo n.º 4
0
    def generate_trajectory_cross_time(self, pos_err, spd_start, acc_start,
                                       spd_end, acc_end, cross_time):
        self.pos_err = pos_err
        self.spd_start = spd_start
        self.acc_start = acc_start
        self.spd_end = spd_end
        self.acc_end = acc_end
        # self.cross_spd = cross_spd

        self.rapid_traj = quadtraj.RapidTrajectory([0, 0, 0], spd_start,
                                                   acc_start, self.gravity)
        self.rapid_traj.set_goal_position(pos_err)
        self.rapid_traj.set_goal_velocity(spd_end)
        self.rapid_traj.set_goal_acceleration(acc_end)
        self.Tf = float(cross_time)
        self.cross_spd = float(np.linalg.norm(pos_err) / self.Tf)
        self.rapid_traj.generate(self.Tf)
Ejemplo n.º 5
0
    def getExtendedPath(self, goal, set_velz=None):
        assert (len(self.goalPosition) > 0)
        traj = quadtraj.RapidTrajectory(self.goalPosition.tolist(),
                                        self.goalVelocity.tolist(),
                                        self.goalAccerleration.tolist(),
                                        self.gravity)
        goal_pos = goal[:3]
        traj.set_goal_position(goal_pos)
        traj.set_goal_acceleration([0, 0, 0])

        if set_velz:
            print("Special case with set vz: ", set_velz * goal[3:])
            traj.set_goal_velocity(set_velz * goal[3:])

        # print("PLANNING: Start: ", self.goalPosition.tolist())
        # print("PLANNING: Vel: ", self.goalVelocity.tolist())
        # print("PLANNING: Acc: ", self.goalAccerleration.tolist())
        # print("PLANNING: Goal: ", goal_pos)

        distance = np.linalg.norm(self.goalPosition - np.array(goal_pos))

        return self.binaryCompute(traj, distance)
# Define the duration:
Tf = 1

timeArr = np.linspace(3,5,N_times)

# Define the input limits:
fmin = 5  #[m/s**2]
fmax = 25 #[m/s**2]
wmax = 20 #[rad/s]
minTimeSec = 0.02 #[s]

# Define how gravity lies:
gravity = [0,0,-9.81]
 
traj = quadtraj.RapidTrajectory(pos0, vel0, acc0, gravity)
traj.set_goal_position(posf)
traj.set_goal_velocity(velf)
traj.set_goal_acceleration(accf)

# Note: if you'd like to leave some states free, there are two options to 
# encode this. As exmample, we will be leaving the velocity in `x` (axis 0)
# free:
#
# Option 1: 
# traj.set_goal_velocity_in_axis(1,velf_y);
# traj.set_goal_velocity_in_axis(2,velf_z);
# 
# Option 2:
# traj.set_goal_velocity([None, velf_y, velf_z])
 
Ejemplo n.º 7
0
    def approach_trajectory(self, pos_start, vel_start, acc_start, if_draw=1):
        pos0 = [float(pos_start[0]),
                float(pos_start[1]),
                float(pos_start[2])]  # position
        vel0 = [float(vel_start[0]),
                float(vel_start[1]),
                float(vel_start[2])]  # position
        acc0 = [float(acc_start[0]),
                float(acc_start[1]),
                float(acc_start[2])]  # position

        posf = self.np_matrix_to_float_list(self.cross_path_p_0)
        velf = self.np_matrix_to_float_list(self.cross_path_v_0)
        # accf = [0, 0, -9.80]  # acceleration
        # accf = [0, 0, -9.80]  # acceleration
        # accf = self.np_matrix_to_float_list(self.base_e[2]*-1.0)
        accf = self.np_matrix_to_float_list(self.g_vec - self.g_sub_vec[2])
        # accf = self.base_e[2].T.tolist()[0]  # acceleration
        gravity = [0, 0, -9.80]

        self.rapid_traj = quadtraj.RapidTrajectory(pos0, vel0, acc0, gravity)
        self.rapid_traj.set_goal_position(posf)
        self.rapid_traj.set_goal_velocity(velf)
        self.rapid_traj.set_goal_acceleration(accf)
        print('Pos0 = ', pos0)
        print('Posf = ', posf)

        print('Norm  = ',
              LA.norm(np.matrix(np.matrix(posf) - np.matrix(pos0))))
        self.Tf = LA.norm(
            np.matrix(np.matrix(posf) - np.matrix(pos0))) / self.para_cross_spd
        self.rapid_traj.generate(self.Tf)

        self.rapid_nn_input_vector = np.zeros((17, 1))
        self.rapid_pos_err = self.cross_path_p_0 - np.matrix(pos0).T
        self.rapid_pos_start = np.matrix(pos0).T
        self.rapid_spd_start = np.matrix(vel0).T
        self.rapid_acc_start = np.matrix(acc0).T
        self.rapid_spd_end = np.matrix(velf).T
        self.rapid_acc_end = np.matrix(accf).T
        self.rapid_cross_time = self.Tf

        self.rapid_nn_input_vector[1, :] = self.para_cross_spd
        self.rapid_nn_input_vector[(2, 3, 4), :] = self.rapid_pos_err
        self.rapid_nn_input_vector[(5, 6, 7), :] = self.rapid_spd_start
        self.rapid_nn_input_vector[(8, 9, 10), :] = self.rapid_acc_start
        self.rapid_nn_input_vector[(11, 12, 13), :] = self.rapid_spd_end
        self.rapid_nn_input_vector[(14, 15, 16), :] = self.rapid_acc_end
        # print(self.rapid_nn_input_vector)

        if (if_draw):

            numPlotPoints = 100
            time = np.linspace(0, self.Tf, numPlotPoints)
            position = np.zeros([numPlotPoints, 3])
            velocity = np.zeros([numPlotPoints, 3])
            acceleration = np.zeros([numPlotPoints, 3])
            thrust = np.zeros([numPlotPoints, 1])
            ratesMagn = np.zeros([numPlotPoints, 1])

            plane_acc = np.zeros([numPlotPoints, 3])
            plane_x = np.zeros([numPlotPoints, 3])
            plane_y = np.zeros([numPlotPoints, 3])
            plane_z = np.zeros([numPlotPoints, 3])

            for i in range(numPlotPoints):
                t = time[i]
                position[i, :] = self.rapid_traj.get_position(t)
                velocity[i, :] = self.rapid_traj.get_velocity(t)
                acceleration[i, :] = self.rapid_traj.get_acceleration(t)
                plane_acc[i, :] = acceleration[i, :] - gravity
                thrust[i] = self.rapid_traj.get_thrust(t)

                vec_camera2center = np.matrix(
                    np.array(self.center) - position[i, :]).T
                Pitch_vec = (
                    vec_camera2center -
                    (self.vector_project(vec_camera2center,
                                         np.matrix(plane_acc[i, :]).T)))
                plane_x[i, :] = Pitch_vec.T.tolist()[0]
                plane_y[i, :] = np.cross(Pitch_vec.T, np.matrix(
                    plane_acc[i, :])).tolist()[0]
                plane_z[i, :] = -plane_acc[i, :]

                plane_x[i, :] = plane_x[i, :] / LA.norm(plane_x[i, :])
                plane_y[i, :] = plane_y[i, :] / LA.norm(plane_y[i, :])
                plane_z[i, :] = plane_z[i, :] / LA.norm(plane_z[i, :])

                if (np.mod(i, 10) == 0 or i == numPlotPoints - 1):
                    draw_arrow(self.ax3d,
                               position[i, :],
                               plane_acc[i, :],
                               1,
                               label='',
                               color='r')
                    # draw_arrow(self.ax3d, position[i, :], plane_x[i, :], 2, label='', color='g')
                    # draw_arrow(self.ax3d, position[i, :], plane_y[i, :], 1, label='', color='b')

                    self.quadrotor_painter.plot_plane(position[i, :],
                                                      plane_x[i, :],
                                                      plane_y[i, :],
                                                      plane_z[i, :])
                # ratesMagn[i] = np.linalg.norm(rapid_traj.get_body_rates(t))

            self.ax3d.plot3D(position[:, 0],
                             position[:, 1],
                             position[:, 2],
                             'g--',
                             label="approach_path")
            self.ax3d.legend()
Ejemplo n.º 8
0
def main():

    # # Initiate subscriber
    # rospy.init_node('trajectory_subscriber', anonymous = True);
    # rospy.Subscriber('DESIRED_WAYPOINTS', ,callback);
    # rospy.spin();
    #
    # Predefined gates
    with open('gate_locations_0.yaml') as handle:
        gate_locations = yaml.safe_load(handle)

    Gate1 = np.mean(gate_locations['Gate1']['location'], axis=0)
    Gate2 = np.mean(gate_locations['Gate2']['location'], axis=0)
    Gate3 = np.mean(gate_locations['Gate3']['location'], axis=0)
    Gate4 = np.mean(gate_locations['Gate4']['location'], axis=0)
    Gate5 = np.mean(gate_locations['Gate5']['location'], axis=0)
    Gate6 = np.mean(gate_locations['Gate6']['location'], axis=0)
    Gate7 = np.mean(gate_locations['Gate7']['location'], axis=0)
    Gate8 = np.mean(gate_locations['Gate8']['location'], axis=0)
    Gate9 = np.mean(gate_locations['Gate9']['location'], axis=0)
    Gate10 = np.mean(gate_locations['Gate10']['location'], axis=0)
    Gate11 = np.mean(gate_locations['Gate11']['location'], axis=0)
    Gate12 = np.mean(gate_locations['Gate12']['location'], axis=0)
    Gate13 = np.mean(gate_locations['Gate13']['location'], axis=0)
    Gate14 = np.mean(gate_locations['Gate14']['location'], axis=0)
    Gate15 = np.mean(gate_locations['Gate15']['location'], axis=0)
    Gate16 = np.mean(gate_locations['Gate16']['location'], axis=0)
    Gate17 = np.mean(gate_locations['Gate17']['location'], axis=0)
    Gate18 = np.mean(gate_locations['Gate18']['location'], axis=0)
    Gate19 = np.mean(gate_locations['Gate19']['location'], axis=0)
    Gate20 = np.mean(gate_locations['Gate20']['location'], axis=0)
    Gate21 = np.mean(gate_locations['Gate21']['location'], axis=0)
    Gate22 = np.mean(gate_locations['Gate22']['location'], axis=0)
    Gate23 = np.mean(gate_locations['Gate23']['location'], axis=0)

    gate = [
        Gate1, Gate2, Gate3, Gate4, Gate5, Gate6, Gate7, Gate8, Gate9, Gate10,
        Gate11, Gate12, Gate13, Gate14, Gate15, Gate16, Gate17, Gate18, Gate19,
        Gate20, Gate21, Gate22, Gate23
    ]

    GATE_ORDER = [19, 10, 21, 2, 13, 9, 14, 1, 22, 15, 23, 6]

    # Define the trajectory starting state:
    pos0 = [-1, -30, 1]  #position
    vel0 = [0, 0, 0]  #velocity
    acc0 = [0, 0, 0]  #acceleration

    # Define the goal state:
    posf = gate[GATE_ORDER[0]]  # position
    velf = [5, 5, 0]  # velocity
    accf = [0, 0, 0]  # acceleration

    # Define the duration:
    Tf = 5

    # Define the input limits:
    fmin = 5  #[m/s**2]
    fmax = 25  #[m/s**2]
    wmax = 20  #[rad/s]
    minTimeSec = 0.02  #[s]

    # Define how gravity lies:
    gravity = [0, 0, -9.81]

    # Trajectory generation
    position = list()
    velocity = list()
    acceleration = list()
    thrust = list()
    ratesMagn = list()
    for i in range(len(GATE_ORDER)):
        traj = quadtraj.RapidTrajectory(pos0, vel0, acc0, gravity)
        traj.set_goal_position(gate[GATE_ORDER[i] - 1])
        traj.set_goal_velocity(velf)
        traj.set_goal_acceleration(accf)
        traj.generate(Tf)
        N = 100
        time = np.linspace(0, Tf, N)
        for j in range(N):
            t = time[j]
            position.append(traj.get_position(t))
            velocity.append(traj.get_velocity(t))
            acceleration.append(traj.get_acceleration(t))
            thrust.append(traj.get_thrust(t))
            ratesMagn.append(np.linalg.norm(traj.get_body_rates(t)))

        ###############
        # Feasibility #
        ###############

        # Test input feasibility
        inputsFeasible = traj.check_input_feasibility(fmin, fmax, wmax,
                                                      minTimeSec)

        # Test whether we fly into the floor
        floorPoint = [0, 0, 0]
        # a point on the floor
        floorNormal = [0, 0, 1]
        # we want to be in this direction of the point (upwards)
        positionFeasible = traj.check_position_feasibility(
            floorPoint, floorNormal)

        for i in range(3):
            print("Axis #", i)
            print("\talpha = ", traj.get_param_alpha(i), "\tbeta = ",
                  traj.get_param_beta(i), "\tgamma = ",
                  traj.get_param_gamma(i))
        print("Total cost = ", traj.get_cost())
        print("Input feasibility result: ",
              quadtraj.InputFeasibilityResult.to_string(inputsFeasible), "(",
              inputsFeasible, ")")
        print("Position feasibility result: ",
              quadtraj.StateFeasibilityResult.to_string(positionFeasible), "(",
              positionFeasible, ")")

        # Reset using last point
        pos0 = position[-1]
        vel0 = velocity[-1]
        acc0 = acceleration[-1]
        traj.reset()

    plot(Tf, GATE_ORDER, N, position, velocity, acceleration, thrust,
         ratesMagn, fmin, fmax, wmax)
Ejemplo n.º 9
0
def main():

    # # Initiate subscriber
    # rospy.init_node('trajectory_subscriber', anonymous = True);
    # rospy.Subscriber('DESIRED_WAYPOINTS', ,callback);
    # rospy.spin();

    # Define the trajectory starting state:
    pos0 = [0, 0, 0]  # position
    vel0 = [0, 0, 0]  # velocity
    acc0 = [0, 0, 0]  # acceleration

    # Define the goal state:
    posf = [20, -20, 17]  # position
    velf = [5, 5, 0]  # velocity
    accf = [0, 0, 0]  # acceleration

    desired_yaw = 10

    # Define the duration:
    tmin = 0.1
    # minimum time, has to be > 0
    tmax = 10
    # maximum time
    Tf = np.linspace(tmin, tmax, 1000)

    # Define the input limits:
    fmin = 5  #[m/s**2]
    fmax = 25  #[m/s**2]
    wmax = 20  #[rad/s]
    minTimeSec = 0.02  #[s]
    tol = 10
    # Error tolerance

    # Define how gravity lies:
    gravity = [0, 0, -9.81]

    #########################
    # Trajectory generation #
    #########################
    position = list()
    velocity = list()
    acceleration = list()
    thrust = list()
    ratesMagn = list()
    bodyRates = list()
    attitude = list()
    N = 100

    # Grid search optimization
    for i in range(len(Tf)):
        traj = quadtraj.RapidTrajectory(pos0, vel0, acc0, gravity)
        traj.set_goal_position(posf)
        traj.set_goal_velocity([2, 10, -5])
        traj.set_goal_acceleration([0, 0, 0])
        traj.generate(Tf[i])
        cost = traj.get_cost()

        # To get (p, q, r), call traj.get_body_rates(t) and traj.get_rotation_matrix(psi, theta,phi)
        # (p, q, r) get_body_rates returns body rates at time t in the inertial frame. These are to be rotated by the rotation matrix.

        # print((np.degrees(traj.get_final_yaw(tmin, Tf[i], N))))
        #and (traj.check_final_yaw(tmin,Tf[i], N) - desired_yaw <= tol)
        if (traj.check_input_feasibility(fmin, fmax, wmax, minTimeSec) == 0):
            print(Tf[i])
            break

    # Obtain the trajectory with the lowest time
    timeToGo = Tf[i]
    time = np.linspace(tmin, timeToGo, N)
    print(timeToGo)
    for j in range(N):
        t = time[j]
        position.append(traj.get_position(t))
        velocity.append(traj.get_velocity(t))
        acceleration.append(traj.get_acceleration(t))
        bodyRates.append(traj.get_body_rates(t, dt=timeToGo / N))
        attitude.append(traj.get_pose(t, dt=timeToGo / N))
        thrust.append(traj.get_thrust(t))
        ratesMagn.append(np.linalg.norm(traj.get_body_rates(t)))
    print(np.matmul(traj.get_rotation_matrix(1, 2, 3), traj.get_body_rates(t)))

    ###############
    # Feasibility #
    ###############

    # Test input feasibility
    inputsFeasible = traj.check_input_feasibility(fmin, fmax, wmax, minTimeSec)

    # Test whether we fly into the floor or any planes
    floorPoint = [0, 0, 0]
    # a point on the floor
    floorNormal = [0, 0, 1]
    # we want to be in this direction of the point (upwards)
    positionFeasible = traj.check_position_feasibility(floorPoint, floorNormal)

    for i in range(3):
        print("Axis #", i)
        print("\talpha = ", traj.get_param_alpha(i), "\tbeta = ",
              traj.get_param_beta(i), "\tgamma = ", traj.get_param_gamma(i))
    print("Total cost = ", traj.get_cost())
    print("Input feasibility result: ",
          quadtraj.InputFeasibilityResult.to_string(inputsFeasible), "(",
          inputsFeasible, ")")
    print("Position feasibility result: ",
          quadtraj.StateFeasibilityResult.to_string(positionFeasible), "(",
          positionFeasible, ")")

    # Reset
    traj.reset()

    plot(timeToGo, N, position, velocity, acceleration, thrust, ratesMagn,
         fmin, fmax, wmax)