Ejemplo n.º 1
0
def convert_extension(infile, outfile, canonical=False):
    """
    Convert one molecule file format into another using OpenEye tools.
    The user may also assign canonical smiles as name before writing output.

    """
    # open input file
    mols = reader.read_mols(infile)

    # open output file
    ofs = oechem.oemolostream()
    if not ofs.open(outfile):
        oechem.OEThrow.Fatal("Unable to open %s for writing" % outfile)

    # write to output
    for mol in mols:
        if canonical:
            smi = oechem.OEMolToSmiles(mol)
        for conf in mol.GetConfs():
            if canonical:
                conf.SetTitle(smi)
            oechem.OEWriteConstMolecule(ofs, conf)

    # close filestreams
    ofs.close()
Ejemplo n.º 2
0
def basic_plot(infile,
               tag,
               style,
               molname=None,
               take_relative=False,
               har_to_kcal=False):
    """
    TODO

    Parameters
    ----------
    infile : string
        Name of SDF file with information in SD tags.
    tag : string
        Full tag string directly as listed in the SD file.
    style : string
        plot style. can be 'scatter', 'line', or 'bar'
        TODO
    take_relative : Boolean
        subtract lowest value
    har_to_kcal : Boolean
        multiply data in Hartrees by 627.5095 to yield kcal/mol

    """
    # Open molecule file.
    mols = reader.read_mols(infile)

    for i, mol_i in enumerate(mols):
        if molname is not None and mol_i.GetTitle() != molname:
            continue

        # get array of all conformer data of this mol
        try:
            data_array = np.fromiter(pt.get_sd_list(mol_i,
                                                    datum='',
                                                    taglabel=tag),
                                     dtype=np.float64)
        except ValueError:
            data_array = np.asarray([np.nan]) * mol_i.NumConfs()

        # exclude conformers for which job did not finish (nan)
        nanIndices = np.argwhere(np.isnan(data_array))
        for j in reversed(nanIndices):  # loop in reverse to delete correctly
            data_array = np.delete(data_array, j)

        if take_relative:
            data_array = data_array - np.amin(data_array)
        if har_to_kcal:
            data_array = 627.5095 * data_array

        # generate plot
        plt.plot(data_array)
        plt.grid()
        plt.title(mol_i.GetTitle() + '\n' + tag, fontsize=14)
        plt.savefig(f'output_{i}.png', bbox_inches='tight')
        plt.show()
Ejemplo n.º 3
0
def filter_confs(infile, tag, outfile):
    """
    Read in OEMols (and each of their conformers) in 'infile'.
    For each molecule:
        rough filter conformers based on energy differences specified by 'tag',
        fine filter conformers based on RMSD values.

    Parameters
    ----------
    infile : str
        Name of SDF file with conformers to be filtered
    tag : str
        SD tag name with the energy value to roughly screen conformers before RMSD
        Screening works by removing conformers of very similar energies, where
        "similar" is defined by thresE parameter. Examples:
        - "QM Psi4 Final Opt. Energy (Har) mp2/def-sv(p)"
        - "QM Psi4 Final Single Pt. Energy (Har) mp2/def-sv(p)"
    outfile : str
        Name of the output file with filtered conformers

    """
    # Parameters for distinguishing cutoff of conformer similarity
    thresE = 5.E-4  # declare confs diff & skip RMSD comparison above this threshold
    thresRMSD = 0.2  # above this threshold (Angstrom), confs are "diff" minima

    wdir, fname = os.path.split(infile)
    numConfsF = open(os.path.join(os.getcwd(), "numConfs.txt"), 'a')
    numConfsF.write("\n{}\n".format(tag))

    # open molecule file
    rmsd_molecules = reader.read_mols(infile)

    # Open outstream file.
    rmsd_ofs = oechem.oemolostream()
    if os.path.exists(outfile):
        raise FileExistsError("Output file {} already exists in {}".format(
            outfile, os.getcwd()))
    if not rmsd_ofs.open(outfile):
        oechem.OEThrow.Fatal("Unable to open %s for writing" % outfile)

    # Identify minima and write output file.
    for mol in rmsd_molecules:
        if identify_minima(mol, tag, thresE, thresRMSD):
            numConfsF.write("%s\t%s\n" % (mol.GetTitle(), mol.NumConfs()))
            oechem.OEWriteConstMolecule(rmsd_ofs, mol)
        else:
            numConfsF.write("%s\t0\n" % (mol.GetTitle()))
    numConfsF.close()
    rmsd_ofs.close()

    print("Done filtering %s to %s.\n" % (fname, outfile))
Ejemplo n.º 4
0
def convert_extension_separate(infile,
                               presuffix,
                               canonical=False,
                               separate='mol'):
    """
    Convert one molecule file format into another using OpenEye tools.
    The user may also assign canonical smiles as name before writing output.
    Separate output into (each mol with all confs) or (each conf).

    presuffix : list
        first item contains prefix of output name, last item contains extension
        ex. ['alkyl', '.xyz']
    separate : string
        'mol' or 'conf'

    """
    # open input file
    mols = reader.read_mols(infile)

    # write to output
    for i, mol in enumerate(mols):

        # open output file
        if separate == 'mol':
            ofs = oechem.oemolostream()
            if not ofs.open('{}_{}{}'.format(presuffix[0], str(i),
                                             presuffix[1])):
                oechem.OEThrow.Fatal("Unable to open %s for writing" % outfile)
        if canonical:
            smi = oechem.OEMolToSmiles(mol)

        for j, conf in enumerate(mol.GetConfs()):
            # open output file
            if separate == 'conf':
                ofs = oechem.oemolostream()
                if not ofs.open('{}_{}_{}{}'.format(presuffix[0], str(i),
                                                    str(j), presuffix[1])):
                    oechem.OEThrow.Fatal("Unable to open %s for writing" %
                                         outfile)
            if canonical:
                conf.SetTitle(smi)
            oechem.OEWriteConstMolecule(ofs, conf)

    # close filestreams
    ofs.close()
Ejemplo n.º 5
0
def confs_to_psi(insdf,
                 method,
                 basis,
                 calctype='opt',
                 memory=None,
                 via_json=False):
    """
    Read in molecule(s) (and conformers, if present) in insdf file. Create
    Psi4 input calculations for each structure.

    Parameters
    ----------
    insdf: string
        Name of the molecule file for which to create Psi4 input file.
        SDF format can contain multiple molecules and multiple conformers per
        molecule in a single file.
    method: string
        Name of the method as understood by Psi4. Example: "mp2"
    basis : string
        Name of the basis set as understood by Psi4. Example: "def2-sv(p)"
    calctype : string
        What kind of Psi4 calculation to run. Supported inputs are:
        'opt' for geometry optimization,
        'spe' for single point energy calculation, and
        'hess' for Hessian calculation.
    memory : string
        How much memory each Psi4 job should take. If not specified, the
        default in Psi4 is 500 Mb. Examples: "2000 MB" "1.5 GB"
        http://www.psicode.org/psi4manual/master/psithoninput.html
    via_json : Boolean
        If True, use JSON wrapper for Psi4 input and output.
        - Psi4 input would be in "input.py", called with python
        - Psi4 output would be in "output.json"
        If False, use normal text files for Psi4 input and output.
        - Psi4 input would be in "input.dat"
        - Psi4 output would be in "output.dat"
    """
    wdir = os.getcwd()

    # open molecules
    molecules = reader.read_mols(insdf)

    ### For each molecule: for each conf, generate input
    for mol in molecules:
        print(mol.GetTitle(), mol.NumConfs())
        if not mol.GetTitle():
            sys.exit("ERROR: OEMol must have title assigned! Exiting.")
        for i, conf in enumerate(mol.GetConfs()):
            # change into subdirectory ./mol/conf/
            subdir = os.path.join(wdir, "%s/%s" % (mol.GetTitle(), i + 1))
            if not os.path.isdir(subdir):
                os.makedirs(subdir)
            if os.path.exists(os.path.join(subdir, 'input.dat')):
                print("Input file already exists. Skipping.\n{}\n".format(
                    os.path.join(subdir, 'input.dat')))
                continue
            label = mol.GetTitle() + '_' + str(i + 1)
            if via_json:
                ofile = open(os.path.join(subdir, 'input.py'), 'w')
                ofile.write("# molecule {}\n\nimport numpy as np\nimport psi4"
                            "\nimport json\n\njson_data = ".format(label))
                json.dump(make_psi_json(conf, label, method, basis, calctype,
                                        memory),
                          ofile,
                          indent=4,
                          separators=(',', ': '))
                ofile.write(
                    "\njson_ret = psi4.json_wrapper.run_json(json_data)\n\n")
                ofile.write("with open(\"output.json\", \"w\") as ofile:\n\t"
                            "json.dump(json_ret, ofile, indent=2)\n\n")
            else:
                ofile = open(os.path.join(subdir, 'input.dat'), 'w')
                ofile.write(
                    make_psi_input(conf, label, method, basis, calctype,
                                   memory))
            ofile.close()
Ejemplo n.º 6
0
def extract_enes(dict1, mol_slice=[]):
    """
    From files in input dictionaries, read in molecules, extract information
    from SD tags for conformer energies and indices.

    Parameters
    ----------
    dict1 : dict
        dictionary of input files and information to extract from SD tags
        keys are: 'theory' 'fname' 'tagkey' 'label'
    mol_slice : list
        list of indices from which to slice mols generator for read_mols
        [start, stop, step]

    Returns
    -------
    titleMols : list of strings
        names of all molecules in the SDF file
    confNums : list of ints
        conformer index numbers
    enes : list of numpy arrays
        conformer energies of the compared file (kcal/mol)
    confNans : list of numpy arrays
        indices of enes where the values are nans

    """

    # Open molecule file.
    if len(mol_slice) == 3:
        mols = reader.read_mols(dict1['fname'], mol_slice)
    else:
        mols = reader.read_mols(dict1['fname'])

    short_tag = dict1['tagkey']
    qmethod, qbasis = reader.separated_theory(dict1['theory'])

    titleMols = []
    confNums = []
    enes = []
    confNans = []

    for imol in mols:

        # Get absolute energies from the SD tags
        iabs = np.array(
            list(
                map(float,
                    pt.get_sd_list(imol, short_tag, 'Psi4', qmethod, qbasis))))

        # Get omega conformer number of first, for reference info
        # whole list can be used for matching purposes
        indices_orig = pt.get_sd_list(imol, "original index")

        # find conformers for which job did not finish (nan)
        nanIndices = np.argwhere(np.isnan(iabs))

        # convert energies from Hartrees to kcal/mol
        iabs = 627.5095 * iabs

        titleMols.append(imol.GetTitle())
        confNans.append(nanIndices)
        confNums.append(indices_orig)
        enes.append(iabs)

    return titleMols, confNums, enes, confNans
Ejemplo n.º 7
0
def avg_mol_time(titles, infile, method, basis, tag, mol_slice=[]):
    """
    For an SDF file with all confs of all mols, get the average runtime
        of all conformers for each molecule.
    The input dictionary may or not be empty. If it is, append the avg/stdev
        time of the calculation from this infile to existing molecule's value.

    Parameters
    ----------
    titles : dictionary
        Keys are molecule names.
        Values are [[qm1_avg, qm1_std], [qm2_avg, qm2_std], ... ]
        where the index refers to a particular level of theory.
        Dictionary may or may not be empty.
    infile : string
        name of the SDF file from which to extract time data from SD tag
    method : string
        QM method
    basis : string
        QM basis set
    tag : string
        datum of interest, e.g., "QM opt energy"
        See keys in the define_tag function of proc_tags module.
    mol_slice : list
        list of indices from which to slice mols generator for read_mols
        [start, stop, step]

    Returns
    -------
    titles : dictionary
        dictionary with extracted data from SDF file; keys are molnames,
        values are lists of list of [avg_time, stdev_time] for many QM methods

    """

    # Open molecule file.
    if len(mol_slice) == 3:
        mols = reader.read_mols(infile, mol_slice)
    else:
        mols = reader.read_mols(infile)

    # Prepare text file to write extracted data.
    timeF = open("timeAvgs.txt", 'a')
    timeF.write("\nFile: {}\n".format(infile))
    timeF.write(
        "Average [{}/{}] [{}s] over all confs for each molecule\n".format(
            method, basis, tag))

    for mol_i in mols:

        # get array of all conformer data of this mol
        try:
            time_array = np.fromiter(pt.get_sd_list(mol_i, tag, 'Psi4', method,
                                                    basis),
                                     dtype=np.float64)
        except ValueError:
            time_array = np.asarray([np.nan]) * mol_i.NumConfs()

        # exclude conformers for which job did not finish (nan)
        nanIndices = np.argwhere(np.isnan(time_array))
        for i in reversed(nanIndices):  # loop in reverse to delete correctly
            time_array = np.delete(time_array, i)
        meantime = np.mean(time_array)
        stdtime = np.std(time_array)

        # write out data to file and store in dictionary
        timeF.write("  %s\t%d confs\t\t%.3f +- %.3f\n" %
                    (mol_i.GetTitle(), time_array.size, meantime, stdtime))
        name = mol_i.GetTitle()
        if name not in titles:
            titles[name] = []
        titles[name].append([meantime, stdtime])

    timeF.close()
    return titles
Ejemplo n.º 8
0
def combine_files_plot(infile,
                       figname='combined.png',
                       molname=None,
                       verbose=False,
                       take_relative=False,
                       har_to_kcal=False):
    """
    TODO

    This only supports plotting of ONE specified molecule across different files.

    Note on take_relative:
        [1] Subtracting global minimum (single value) from all energies
        doesn't work since everything is still on different scale.
    subtract: (1) first conformer of each?, (2) global minimum?, (3) minimum of each?

    Parameters
    ----------
    infile : str
        Filename with information on the files to read in, and
        the SDF tags to be extracted from each. Columns are:
        (1) QM method/basis, (2) sdf file, (3) tag key in sdf (like 'QM spe'),
        (4) arbitrary label for plotting. Separate columns by comma.
    molname
    verbose

    """
    wholedict = reader.read_text_input(infile)

    numFiles = len(wholedict)
    xarray = []
    yarray = []
    labels = []
    titles = []
    for i in wholedict:
        print("Reading molecule(s) from file: ", wholedict[i]['fname'])
        mols = reader.read_mols(wholedict[i]['fname'])
        qmethod, qbasis = reader.separated_theory(wholedict[i]['theory'])
        short_tag = wholedict[i]['tagkey']

        for j, mol_j in enumerate(mols):
            if molname is not None and mol_j.GetTitle() != molname:
                continue
            data_array = np.array(
                list(
                    map(
                        float,
                        pt.get_sd_list(mol_j, short_tag, 'Psi4', qmethod,
                                       qbasis))))

        if take_relative:
            data_array = data_array - data_array[0]
            #data_array = data_array/data_array[0]
        if har_to_kcal:
            data_array = 627.5095 * data_array

        titles.append(mol_j.GetTitle())
        labels.append(wholedict[i]['label'])
        yarray.append(data_array)
        xarray.append(range(len(data_array)))

    if verbose:
        header = '{}\n'.format(molname)
        for l in labels:
            header += ("%s\n" % l)
        xydata = np.vstack((xarray[0], yarray)).T
        np.savetxt('combined.dat',
                   xydata,
                   delimiter='\t',
                   header=header,
                   fmt=' '.join(['%i'] + ['%10.4f'] * numFiles))

    # letter labels for x-axis
    num_confs = len(xarray[0])
    letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
    rpt = int((num_confs / 26) + 1)
    xlabs = [''.join(i)
             for i in itertools.product(letters, repeat=rpt)][:num_confs]

    fig = plt.figure()
    ax = fig.add_subplot(111)
    xlabel = 'conformer'
    ylabel = "energy"

    # vtl print max range of relative energies
    conf_then_file = np.array(yarray).T
    ranges = []
    for c in conf_then_file:
        c_spread = max(c) - min(c)
        ranges.append(c_spread)
    print(f'mol {molname} max range: {max(ranges)}')

    ax.set_prop_cycle(
        plt.cycler('color', plt.cm.rainbow(np.linspace(0, 1, len(yarray)))))
    for i, (xs, ys) in enumerate(zip(xarray, yarray)):
        plt.plot(xs, ys, '-o', lw=0.8, label=labels[i])

    # publication view
#    plt.ylabel(ylabel,fontsize=8)
#    plt.xlabel(xlabel,fontsize=8)
#    plt.legend(bbox_to_anchor=(0.08,1.05),loc=3,fontsize=8)
#    fig.set_size_inches(3.37,1.7)

# standard view
    plt.ylabel(ylabel, fontsize=14)
    plt.xlabel(xlabel, fontsize=14)
    plt.xticks(list(range(num_confs)), xlabs)
    plt.legend(bbox_to_anchor=(1.05, 1), loc=2)

    plt.title(molname)
    plt.grid()
    plt.savefig(figname, bbox_inches='tight', dpi=300)
    plt.show()
Ejemplo n.º 9
0
def getRMSD(sdfRef, theory, rmsdict, package='Psi4'):
    """
    Perform RMSD calculation from an SDF file for molecule and its conformers.

    sdfRef: string, pathname of the SDF file with energies of opt 1 and opt 2
    theory: string, level of theory in format of mp2/6-31G*
    rmsdict: dictionary (can be empty) which will be populated in form of
             rmsdict[theory][molName] = 0.000  if the RMSD of before/after energies are 0.000
    package: string, name of software package used for QM calculation. only Psi4 currently supported

    """

    method, basis = theory.split('/')[0].strip(), theory.split('/')[1].strip()

    # create a molecule read in stream
    print("Opening SDF file %s" % sdfRef)
    molsRef = reader.read_mols(sdfRef)

    # create file object for output RMSD calculation
    RMSD = open("RMSD.txt", 'a')
    RMSD.write("\nAnalyzing file: %s\n# Level of theory: %s\n" %
               (sdfRef, theory))

    # create file object for initial and final energies
    energies = open("energies_breakdown.txt", 'a')
    maximum = open("maxenergies.txt", "a")

    # Grab energies, perform RMSD calculation, write data to txt files.
    for rmol in molsRef:
        molName = rmol.GetTitle()
        tmol = np.asarray(pt.get_sd_list(rmol, 'QM opt energy', 'Psi4', method,
                                         basis),
                          dtype=float)
        imol = np.asarray(pt.get_sd_list(rmol, 'QM opt energy initial', 'Psi4',
                                         method, basis),
                          dtype=float)
        final = tmol.copy()
        initial = imol.copy()

        # subtract conformer[0] energies from all conformers
        try:
            tmol -= tmol[0]
        except IndexError as e:
            sys.exit("No energies found for {} {}/{}! Check that data is \
stored in tags. Exiting.".format(rmol.GetTitle(), method, basis))
        imol -= imol[0]

        #subtracts initial minus final and sqaures all values
        fmol = np.subtract(tmol, imol)
        fmol = fmol[~np.isnan(fmol)]
        fmol = np.square(fmol)

        #sums all energies of conformers for given rmol and then takes average with respect to n-1 number of conformers
        tot = 0
        for n in fmol:
            tot += n
        average = math.sqrt(tot / (fmol.size - 1))

        #convert average from Hartree to Kcal/mol
        average = average * 627.5095

        # puts RMSD values into .txt file, and store in dict for plotting.
        RMSD.write("#%s\t%.5f RMSD(Kcal/mol)\n" % (molName, average))
        rmsdict[theory][molName] = average

        # store energies of initial and final for molecules conformers in energies.txt
        energies.write(
            "\n#%s\n#%s\n#RMSD = %.5f(y)\t\t(x=Hartree, y=kcal/mol)\n#conf. init. Energy(x)  \t final Energy(x) \t diff.(x)\tdiff. (y) \n"
            % (theory, molName, average))

        # get list of conformer indices to identify high RMSD ones
        conflist = pt.get_sd_list(rmol, "original index", package, method,
                                  basis)
        conformer = []
        for item in conflist:
            conformer.append(item.split(',')[0])  # append orig conf
        conformer = np.asarray(conformer, dtype=int)
        difference = np.array([])
        for i in range(len(tmol)):
            energies.write(
                "%r \t %5.9f \t %5.9f \t %5.9f\t%5.9f \n" %
                (conformer[i], initial[i], final[i], final[i] - initial[i],
                 (final[i] - initial[i]) * 627.5095))
            difference = np.append(difference,
                                   [(final[i] - initial[i]) * 627.5095])

        # find max 3 confs with highest RMSDs
        try:
            difference = np.absolute(difference)
            confmax1 = (np.nanargmax(difference))
            # set max conf to zero to find next highest
            difference[confmax1] = 0

            difference = np.absolute(difference)
            confmax2 = (np.nanargmax(difference))
            difference[confmax2] = 0

            difference = np.absolute(difference)
            confmax3 = (np.nanargmax(difference))
            difference[confmax3] = 0

            max1 = conformer[confmax1]
            max2 = conformer[confmax2]
            max3 = conformer[confmax3]
        except ValueError as e:
            #print("ValueError: {}".format(e))
            # TODO don't plot this mol for all nan's
            print("All RMSDs in list for file {} mol {} are nan!!!".format(
                sdfRef, molName))
            max1 = max2 = max3 = -1

        energies.write(
            "#*** Max energy differences are conformers (hi-->low): %r, %r, %r ***\n\n"
            % (max1, max2, max3))
        maximum.write("%s, %s : %r, %r, %r\n" %
                      (theory, molName, max1, max2, max3))

    maximum.close()
    RMSD.close()
    energies.close()

    return rmsdict
Ejemplo n.º 10
0
def get_psi_results(origsdf,
                    finsdf,
                    calctype='opt',
                    psiout="output.dat",
                    timeout="timer.dat"):
    """
    Read in OEMols (and each of their conformers) in origsdf file,
        get results from Psi4 calculations in the same directory as origsdf,
        and write out results into finsdf file.
    Directory layout is .../maindir/molName/confNumber/outputfiles .
    Both origsdf and finsdf are located in maindir.

    Parameters
    ----------
    origsdf:  string - original SDF file of input structures of QM calculation
    finsdf:   string - full name of final SDF file with optimized results.
    calctype: string; one of 'opt','spe','hess' for geometry optimization,
        single point energy calculation, or Hessian calculation
    psiout:   string - name of the Psi4 output files. Default is "output.dat"
    timeout: string - name of the Psi4 timer files. Default is "timer.dat"

    Returns
    -------
    method: string - QM method from Psi4 calculations
    basisset: string - QM basis set from Psi4 calculations

    None is returned if the function returns early (e.g., if output file
       already exists)

    """

    hdir, fname = os.path.split(origsdf)
    wdir = os.getcwd()

    # check that specified calctype is valid
    if calctype not in {'opt', 'spe', 'hess'}:
        raise ValueError("Specify a valid calculation type.")

    # read in molecules
    molecules = reader.read_mols(origsdf)

    # open outstream file
    writeout = os.path.join(wdir, finsdf)
    write_ofs = oechem.oemolostream()
    if os.path.exists(writeout):
        raise FileExistsError(f"File already exists: {finsdf}\n")
    if not write_ofs.open(writeout):
        oechem.OEThrow.Fatal("Unable to open %s for writing" % writeout)

    # Hessian dictionary, where hdict['molTitle']['confIndex'] has np array
    if calctype == 'hess':
        hdict = {}

    # for each conformer, process output file and write new data to SDF file
    for mol in molecules:
        print("===== %s =====" % (mol.GetTitle()))
        if calctype == 'hess':
            hdict[mol.GetTitle()] = {}

        for j, conf in enumerate(mol.GetConfs()):

            props = initiate_dict()

            # set file locations
            timef = os.path.join(hdir,
                                 "%s/%s/%s" % (mol.GetTitle(), j + 1, timeout))
            outf = os.path.join(hdir,
                                "%s/%s/%s" % (mol.GetTitle(), j + 1, psiout))

            # process output and get dictionary results
            props = get_conf_data(props, calctype, timef, outf)

            # if output was missing or are missing calculation details
            # move on to next conformer
            if props['missing'] or (calctype == 'opt' and not all(
                    key in props
                    for key in ['numSteps', 'finalEnergy', 'coords'])):
                print(f"ERROR reading {outf}\nEither Psi4 job was incomplete "
                        "or wrong calctype specified\n")
                method = None
                basisset = None
                continue

            # add data to oemol
            conf = set_conf_data(conf, props, calctype)
            method = props['method']
            basisset = props['basis']

            # if hessian, append to dict bc does not go to SD tag
            if calctype == 'hess':
                hdict[mol.GetTitle()][j + 1] = props['hessian']

            # check mol title
            conf = check_title(conf, origsdf)

            # write output file
            oechem.OEWriteConstMolecule(write_ofs, conf)

    # if hessian, write hdict out to separate file
    if calctype == 'hess':
        hfile = os.path.join(wdir,
                             os.path.splitext(finsdf)[0] + '.hess.pickle')
        pickle.dump(hdict, open(hfile, 'wb'))

    # close file streams
    write_ofs.close()
    return method, basisset