Ejemplo n.º 1
0
    def get_fund_last_performance(self):

        """ 基金和对比基准最近业绩表现 """

        date_array = self.get_fund_performace_date()
        fund_nav = self.fund_nav
        result_fund = pd.DataFrame([], columns=['收益率', '超额收益率', '年化跟踪误差'])

        # fund
        bench_series = Index().get_index_factor(self.bench_code, attr=['CLOSE'])
        fund_series = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ']), pd.DataFrame(bench_series))

        for i in range(len(date_array)):

            label = date_array[i][0]
            beg_date = date_array[i][1]
            end_date = date_array[i][2]
            pct = fund_series.get_interval_return(beg_date, end_date, short_handled=True)
            bench_pct = fund_series.get_interval_return_benchmark(beg_date, end_date)
            te = fund_series.get_interval_tracking_error(beg_date, end_date)
            result_fund.loc[label, "收益率"] = pct
            try:
                result_fund.loc[label, "超额收益率"] = pct - bench_pct * 0.95
            except Exception as e:
                result_fund.loc[label, "超额收益率"] = ""
            result_fund.loc[label, "年化跟踪误差"] = te

        columns = list(result_fund.columns)
        result_fund['最近表现'] = result_fund.index
        columns.insert(0, '最近表现')
        result_fund = result_fund[columns]
        return result_fund
    def mfcteda_fund_excess_return(self, end_date, fund_type, fund_code,
                                   fund_name, benchmark_code, benchmark_ratio):
        """ 计算1个基金今年所有月份超额收益 """

        date_pd = self.get_date_pd(end_date)

        if fund_type == "公募":
            fund_data = MfcData().get_mfc_public_fund_nav(fund_code)
            fund_data = fund_data['NAV_ADJ']
        else:
            fund_data = MfcData().get_mfc_private_fund_nav(fund_name)
            fund_data = fund_data['累计复权净值']

        benchmark_data = Index().get_index_factor(benchmark_code,
                                                  attr=["CLOSE"])
        return_pd = pd.DataFrame([],
                                 columns=date_pd.columns,
                                 index=[fund_name])

        for i in date_pd.columns:

            beg_date = date_pd.ix["beg_date", i]
            end_date = date_pd.ix["end_date", i]
            fs = FinancialSeries(
                pd.DataFrame(fund_data),
                pd.DataFrame(benchmark_data) * benchmark_ratio)
            try:
                return_pd.ix[fund_name, i] = fs.get_interval_excess_return(
                    beg_date, end_date)
            except Exception as e:
                pass

        return return_pd
Ejemplo n.º 3
0
    def rank_excess_fund(self, fund_pool_name, ge_index_code, my_index_code,
                         my_fund_code, beg_date, end_date):
        """
        计算某只基金在基金池的超额收益排名
        这只基金指定基准 其他默认为windqa
        """
        fund_pool = FundPool().get_fund_pool_all(date="20181231",
                                                 name=fund_pool_name)
        fund_pool = fund_pool[fund_pool['setupdate'] < beg_date]
        fund_pool = list(fund_pool['wind_code'].values)

        fund_pool.append(my_fund_code)
        result = pd.DataFrame([], index=fund_pool)
        data = FundFactor().get_fund_factor("Repair_Nav")

        for i in range(0, len(fund_pool)):

            fund_code = fund_pool[i]

            if fund_code == my_fund_code:
                index_code = my_index_code
            else:
                index_code = ge_index_code

            try:
                print(fund_code, index_code, beg_date, end_date)
                fund = pd.DataFrame(data[fund_code])
                index = Index().get_index_factor(index_code, attr=["CLOSE"])
                fs = FinancialSeries(pd.DataFrame(fund), pd.DataFrame(index))
                fund_return = fs.get_interval_return(beg_date, end_date)
                bench_return = fs.get_interval_return_benchmark(
                    beg_date, end_date)
                result.loc[fund_code, "基准收益"] = bench_return
                result.loc[fund_code, "基金收益"] = fund_return
                result.loc[fund_code, "超额收益"] = -bench_return + fund_return

            except Exception as e:
                print(e)

        result = result.dropna()
        result = result[~result.index.duplicated()]
        result = result.sort_values(by=['超额收益'], ascending=False)
        result['收益名次'] = range(1, len(result) + 1)
        result['收益排名'] = result['收益名次'].map(
            lambda x: str(x) + '/' + str(len(result)))
        result['收益排名百分比'] = result['收益名次'].map(lambda x: x / len(result))
        excess_return = result.loc[my_fund_code, "超额收益"]
        pct = result.loc[my_fund_code, "收益排名百分比"]
        rank_str = result.loc[my_fund_code, "收益排名"]
        result.to_csv(
            os.path.join(
                self.data_path,
                "超额收益_%s_%s_%s.csv" % (my_fund_code, beg_date, end_date)))
        return excess_return, pct, rank_str
Ejemplo n.º 4
0
def return_index(end_date, index_code, index_name, index_ratio, mage_date):

    """ 某个指数收益率 """

    today = datetime.strptime(end_date, "%Y%m%d")
    before_1y = datetime(year=today.year - 1, month=today.month, day=today.day).strftime("%Y%m%d")
    before_2y = datetime(year=today.year - 2, month=today.month, day=today.day).strftime("%Y%m%d")
    before_3y = datetime(year=today.year - 3, month=today.month, day=today.day).strftime("%Y%m%d")
    before_5y = datetime(year=today.year - 5, month=today.month, day=today.day).strftime("%Y%m%d")
    before_10y = datetime(year=today.year - 10, month=today.month, day=today.day).strftime("%Y%m%d")

    date_array = np.array([
        ["2019年", "20190101", end_date, '20180930'],
        ["2018年", '20180101', "20181231", '20170930'],
        ["2017年", "20170101", '20171231', "20160930"],
        ["2016年", "20160101", '20161231', "20150930"],
        ["2015年", "20150101", '20151231', "20140930"],
        ["2014年", "20140101", '20141231', "20130930"],
        ["2013年", "20130101", '20131231', "20120930"],
        ["2012年", "20120101", '20121231', "20110930"],
        ["2011年", "20110101", '20111231', "20100930"],
        ["2010年", "20100101", '20101231', "20090930"],
        ["2009年", "20090101", '20091231', "20080930"],
        ["2008年", "20080101", '20081231', "20070930"],
        ["2007年", "20070101", '20071231', "20060930"],
        ["成立以来", mage_date, end_date, mage_date],
        ["过去1年", before_1y, end_date, before_1y],
        ["过去2年", before_2y, end_date, before_2y],
        ["过去3年", before_3y, end_date, before_3y],
        ["过去5年", before_5y, end_date, before_5y],
        ["过去10年", before_10y, end_date, before_10y],
    ])

    performance_table = pd.DataFrame([], index=[index_name])
    for i_date in range(len(date_array)):
        label = date_array[i_date, 0]
        beg_date = date_array[i_date, 1]
        end_date = date_array[i_date, 2]
        if beg_date >= str(int(mage_date)):
            index_close = Index().get_index_factor(index_code, attr=['CLOSE'])
            print(index_close.tail())
            fs = FinancialSeries(pd.DataFrame(index_close))
            pct = fs.get_interval_return(beg_date, end_date)
            print(pct, index_name)
            if type(pct) == np.float64:
                pct *= float(index_ratio)
            performance_table.loc[index_name, label] = pct
        else:
            performance_table.ix[index_name, label] = "NAN"

    print(performance_table)
    return performance_table
Ejemplo n.º 5
0
def return_fund(end_date, fund_code, fund_name, mage_date):

    """ 某个基金收益率 """

    today = datetime.strptime(end_date, "%Y%m%d")
    before_1y = datetime(year=today.year - 1, month=today.month, day=today.day).strftime("%Y%m%d")
    before_2y = datetime(year=today.year - 2, month=today.month, day=today.day).strftime("%Y%m%d")
    before_3y = datetime(year=today.year - 3, month=today.month, day=today.day).strftime("%Y%m%d")
    before_5y = datetime(year=today.year - 5, month=today.month, day=today.day).strftime("%Y%m%d")
    before_10y = datetime(year=today.year - 10, month=today.month, day=today.day).strftime("%Y%m%d")

    date_array = np.array([
        ["2019年", "20190101", end_date, '20180930'],
        ["2018年", '20180101', "20181231", '20170930'],
        ["2017年", "20170101", '20171231', "20160930"],
        ["2016年", "20160101", '20161231', "20150930"],
        ["2015年", "20150101", '20151231', "20140930"],
        ["2014年", "20140101", '20141231', "20130930"],
        ["2013年", "20130101", '20131231', "20120930"],
        ["2012年", "20120101", '20121231', "20110930"],
        ["2011年", "20110101", '20111231', "20100930"],
        ["2010年", "20100101", '20101231', "20090930"],
        ["2009年", "20090101", '20091231', "20080930"],
        ["2008年", "20080101", '20081231', "20070930"],
        ["2007年", "20070101", '20071231', "20060930"],
        ["成立以来", mage_date, end_date, mage_date],
        ["过去1年", before_1y, end_date, before_1y],
        ["过去2年", before_2y, end_date, before_2y],
        ["过去3年", before_3y, end_date, before_3y],
        ["过去5年", before_5y, end_date, before_5y],
        ["过去10年", before_10y, end_date, before_10y],
    ])


    performance_table = pd.DataFrame([], index=[fund_name])
    for i_date in range(len(date_array)):
        label = date_array[i_date, 0]
        beg_date = date_array[i_date, 1]
        end_date = date_array[i_date, 2]
        if beg_date >= str(int(mage_date)):
            fund_nav = MfcData().get_mfc_public_fund_nav(fund_code)
            fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ']))
            performance_table.ix[fund_name, label] = fs.get_interval_return(beg_date, end_date)
        else:
            performance_table.ix[fund_name, label] = "NAN"
    print(performance_table)
    return performance_table
    def mfcteda_fund_return(self, end_date, fund_type, fund_code, fund_name):
        """ 计算1个基金今年所有月份收益 """

        date_pd = self.get_date_pd(end_date)
        fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)

        return_pd = pd.DataFrame([],
                                 columns=date_pd.columns,
                                 index=[fund_name])

        for i in date_pd.columns:

            beg_date = date_pd.ix["beg_date", i]
            end_date = date_pd.ix["end_date", i]

            fs = FinancialSeries(pd.DataFrame(fund_data))
            try:
                return_pd.ix[fund_name,
                             i] = fs.get_interval_return(beg_date, end_date)
            except Exception as e:
                pass
        return return_pd
    def mfcteda_benchmark_return(self, end_date, benchmark_code,
                                 benchmark_name):
        """ 计算1个指数今年所有月份收益 """

        date_pd = self.get_date_pd(end_date)

        benchmark_data = Index().get_index_factor(benchmark_code,
                                                  attr=["CLOSE"])
        return_pd = pd.DataFrame([],
                                 columns=date_pd.columns,
                                 index=[benchmark_name])

        for i in date_pd.columns:

            beg_date = date_pd.ix["beg_date", i]
            end_date = date_pd.ix["end_date", i]
            fs = FinancialSeries(pd.DataFrame(benchmark_data))
            try:
                return_pd.ix[benchmark_name,
                             i] = fs.get_interval_return(beg_date, end_date)
            except Exception as e:
                pass

        return return_pd
Ejemplo n.º 8
0
    def cal_fund_index(self, fund_pool_name, my_index_code, my_fund_code, beg_date, end_date):

        """
        计算某只基金所在基金池的各项指标(包括基金收益、基金基准收益、超额收益、跟踪误差及信息比率) 剔除新基金
        """

        fund_pool = Fund().get_fund_pool_all(date="20181231", name=fund_pool_name)
        fund_pool = fund_pool[fund_pool['setupdate'] < beg_date]
        fund_pool = list(fund_pool['wind_code'].values)

        fund_pool.append(my_fund_code)
        result = pd.DataFrame([], index=fund_pool)
        data = Fund().get_fund_factor("Repair_Nav")

        for i in range(0, len(fund_pool)):

            fund_code = fund_pool[i]
            if fund_code == my_fund_code:
                index_code = my_index_code
            else:
                index_code = "881001.WI"

            print(fund_code, index_code, beg_date, end_date)

            try:
                fund = pd.DataFrame(data[fund_code])
                index = Index().get_index_factor(index_code, attr=["CLOSE"])
                fs = FinancialSeries(pd.DataFrame(fund), pd.DataFrame(index))
                fund_return = fs.get_interval_return_annual(beg_date, end_date)
                bench_return = fs.get_interval_return_benchmark(beg_date, end_date)
                excess_return = fs.get_interval_excess_return(beg_date, end_date)
                tracking_error = fs.get_interval_tracking_error(beg_date, end_date)
                ir = excess_return / tracking_error

                result.loc[fund_code, "基准收益"] = bench_return
                result.loc[fund_code, "基金收益"] = fund_return
                result.loc[fund_code, "超额收益"] = - bench_return + fund_return
                result.loc[fund_code, "跟踪误差"] = tracking_error
                result.loc[fund_code, "信息比率"] = ir

            except Exception as e:
                print(e)

        result = result.dropna()
        result = result[~result.index.duplicated()]
        result = result.sort_values(by=['基金收益'], ascending=False)
        result['收益名次'] = range(1, len(result) + 1)
        result['收益排名'] = result['收益名次'].map(lambda x: str(x) + '/' + str(len(result)))
        file = "%s_%s_%s_%s.csv" % (fund_pool_name, my_fund_code, beg_date, end_date)
        file = os.path.join(self.data_path, 'data', file)
        result.to_csv(file)
Ejemplo n.º 9
0
    def get_fund_last_performance(self):
        """ 基金和对比基准最近业绩表现 """

        date_array = self.get_fund_performace_date()
        fund_nav = self.fund_nav
        result_fund = pd.DataFrame([], columns=['收益率'])

        # fund
        fund_series = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ']))

        for i in range(len(date_array)):

            label = date_array[i][0]
            beg_date = date_array[i][1]
            end_date = date_array[i][2]
            pct = fund_series.get_interval_return(beg_date,
                                                  end_date,
                                                  short_handled=True)
            result_fund.loc[label, "收益率"] = pct

        # benchmark
        for i_bench in range(len(self.comparsion_bench_list)):
            bench_name = self.comparsion_bench_list[i_bench][0]
            bench_code = self.comparsion_bench_list[i_bench][1]
            index_close = Index().get_index_factor(bench_code, attr=['CLOSE'])
            index_series = FinancialSeries(pd.DataFrame(index_close['CLOSE']))

            for i in range(len(date_array)):
                label = date_array[i][0]
                beg_date = date_array[i][1]
                end_date = date_array[i][2]
                pct = index_series.get_interval_return(beg_date,
                                                       end_date,
                                                       short_handled=True)
                result_fund.loc[label, bench_name] = pct

        columns = list(result_fund.columns)
        result_fund['最近表现'] = result_fund.index
        columns.insert(0, '最近表现')
        result_fund = result_fund[columns]
        return result_fund
Ejemplo n.º 10
0
    def cal_summary_table_sample(fund_name, fund_code, fund_type, date_array,
                                 benchmark_array):
        """
        主动股票型基金表现总结(简单版)
        分区间计算 基金表现 累计收益
        分区间计算 分基准 计算基准累计收益
        """

        fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)
        performance_table = pd.DataFrame([], columns=date_array[:, 0])
        fs = FinancialSeries(pd.DataFrame(fund_data),
                             pd.DataFrame([], columns=['nav']))

        for i_date in range(date_array.shape[0]):
            label = date_array[i_date, 0]
            bd = Date().change_to_str(date_array[i_date, 1])
            ed = Date().change_to_str(date_array[i_date, 2])
            print("Cal Interval Return ", bd, ed)
            performance_table.ix[fund_name + "累计收益",
                                 label] = fs.get_interval_return(bd, ed)

        for i_benchmark in range(benchmark_array.shape[0]):

            benchmark_name = benchmark_array[i_benchmark, 0]
            benchmark_code = benchmark_array[i_benchmark, 1]
            benchmark_data = Index().get_index_factor(benchmark_code,
                                                      attr=["CLOSE"])
            fs = FinancialSeries(pd.DataFrame(benchmark_data),
                                 pd.DataFrame([], columns=['nav']))

            for i_date in range(date_array.shape[0]):
                label = date_array[i_date, 0]
                bd = Date().change_to_str(date_array[i_date, 1])
                ed = Date().change_to_str(date_array[i_date, 2])
                performance_table.ix[benchmark_name + "累计收益",
                                     label] = fs.get_interval_return(bd, ed)

        return performance_table
Ejemplo n.º 11
0
    def cal_summary_table(fund_name, fund_code, fund_type, date_array,
                          benchmark_array):
        """
        主动股票型基金表现总结
        分区间计算 基金表现(累计收益 年化收益 年化波动 最大回撤 收益波动比)
        分区间计算 分基准 计算基准表现(累计收益 年化收益 年化波动 最大回撤 收益波动比)
        """

        # 分类读取基金数据
        fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)
        performance_table = pd.DataFrame([], columns=date_array[:, 0])
        fs = FinancialSeries(pd.DataFrame(fund_data),
                             pd.DataFrame([], columns=['nav']))

        for i_date in range(date_array.shape[0]):

            label = date_array[i_date, 0]
            bd = Date().change_to_str(date_array[i_date, 1])
            ed = Date().change_to_str(date_array[i_date, 2])
            performance_table.ix[fund_name + "累计收益",
                                 label] = fs.get_interval_return(bd, ed)
            performance_table.ix[fund_name + "年化收益",
                                 label] = fs.get_interval_return_annual(
                                     bd, ed)
            performance_table.ix[fund_name + "年化波动",
                                 label] = fs.get_interval_std_annual(bd, ed)
            performance_table.ix[fund_name + "最大回撤",
                                 label] = fs.get_interval_max_drawdown(bd, ed)
            performance_table.ix[fund_name + "收益波动比",
                                 label] = fs.get_interval_return_std_ratio(
                                     bd, ed)

        for i_benchmark in range(benchmark_array.shape[0]):

            benchmark_name = benchmark_array[i_benchmark, 0]
            benchmark_code = benchmark_array[i_benchmark, 1]
            benchmark_data = Index().get_index_factor(benchmark_code,
                                                      attr=["CLOSE"])
            fs = FinancialSeries(pd.DataFrame(benchmark_data),
                                 pd.DataFrame([], columns=['nav']))

            for i_date in range(date_array.shape[0]):
                label = date_array[i_date, 0]
                bd = Date().change_to_str(date_array[i_date, 1])
                ed = Date().change_to_str(date_array[i_date, 2])

                performance_table.loc[benchmark_name + "累计收益",
                                      label] = fs.get_interval_return(bd, ed)
                performance_table.loc[benchmark_name + "年化收益",
                                      label] = fs.get_interval_return_annual(
                                          bd, ed)
                performance_table.loc[benchmark_name + "年化波动",
                                      label] = fs.get_interval_std_annual(
                                          bd, ed)
                performance_table.loc[benchmark_name + "最大回撤",
                                      label] = fs.get_interval_max_drawdown(
                                          bd, ed)

        return performance_table
Ejemplo n.º 12
0
    def cal_summary_table_enhanced_fund(fund_name,
                                        fund_code,
                                        fund_type,
                                        date_array,
                                        benchmark_code,
                                        benchmark_name,
                                        benchmark_ratio=1.0):
        """
        指数型基金表现总结
        分区间计算 基金和基准表现(累计收益 年化收益 超额收益 跟踪误差 信息比率 超额收益最大回撤等)
        """

        # 分类读取基金数据
        fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)
        benchmark_data = Index().get_index_factor(benchmark_code,
                                                  attr=["CLOSE"])

        enhanced_table = pd.DataFrame([], columns=date_array[:, 0])
        fs = FinancialSeries(pd.DataFrame(fund_data),
                             pd.DataFrame(benchmark_data), benchmark_ratio)

        for i_date in range(date_array.shape[0]):
            label = date_array[i_date, 0]
            bd = Date().change_to_str(date_array[i_date, 1])
            ed = Date().change_to_str(date_array[i_date, 2])

            enhanced_table.loc[fund_name + "累计收益",
                               label] = fs.get_interval_return(bd, ed)
            enhanced_table.loc[benchmark_name + "累计收益",
                               label] = fs.get_interval_return_benchmark(
                                   bd, ed)
            bench_return = fs.get_interval_return_benchmark_ratio(bd, ed)
            enhanced_table.loc[benchmark_name + "*%s累计收益" % benchmark_ratio,
                               label] = bench_return
            enhanced_table.loc[fund_name + "超额收益",
                               label] = fs.get_interval_excess_return(bd, ed)
            enhanced_table.loc[fund_name + "超额年化收益",
                               label] = fs.get_interval_excess_return_annual(
                                   bd, ed)
            enhanced_table.loc[fund_name + "跟踪误差",
                               label] = fs.get_interval_tracking_error(bd, ed)
            enhanced_table.loc[fund_name + "信息比率",
                               label] = fs.get_interval_mean_ir(bd, ed)
            enhanced_table.loc[
                fund_name + "超额收益最大回撤",
                label] = fs.get_interval_excess_return_max_drawdown(bd, ed)
            enhanced_table.loc[fund_name + "标准差",
                               label] = fs.get_interval_std_annual(bd, ed)
            enhanced_table.loc[fund_name + "夏普比率",
                               label] = fs.get_interval_shape_ratio(
                                   bd, ed, 0.03)
            enhanced_table.loc[fund_name + "最大回撤",
                               label] = fs.get_interval_max_drawdown(bd, ed)
            enhanced_table.loc[fund_name + "年化收益",
                               label] = fs.get_interval_return_annual(bd, ed)
            enhanced_table.loc[
                benchmark_name + "年化收益",
                label] = fs.get_interval_return_annual_benchmark(bd, ed)

        return enhanced_table
Ejemplo n.º 13
0
def write_public_qf(end_date, save_path):

    # 参数
    ###########################################################################################
    fund_name = '泰达宏利启富'
    fund_code = '003912.OF'
    fund_type = "公募"

    benchmark_code = '885003.WI'
    benchmark_name = '偏债混合型基金总指数'
    benchmark_code_2 = "881001.WI"
    benchmark_name_2 = "WIND全A"
    benchmark_ratio = 0.95

    setup_date = '20170315'
    date_array = np.array([["2019年", '20190101', end_date, '20180930'],
                           ["2018年", "20180101", '20181231', "20170930"],
                           ["2017年", setup_date, '20171231', setup_date],
                           ["成立以来", setup_date, end_date, setup_date]])

    benchmark_array = np.array([["沪深300",
                                 "000300.SH"], ["WIND全A", "881001.WI"],
                                ["中证全债", "H11001.CSI"],
                                ["偏债混合基金指数", '885003.WI']])

    from quant.fund.fund import Fund
    fund_pct = Fund().get_fund_factor("Repair_Nav_Pct")
    bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100

    # 准备文件
    ###########################################################################################
    file_name = os.path.join(save_path, "OutFile", fund_name + '.xlsx')
    sheet_name = fund_name
    excel = WriteExcel(file_name)
    worksheet = excel.add_worksheet(sheet_name)

    # 写入基金表现 和基金排名
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table(fund_name, fund_code,
                                                     fund_type, date_array,
                                                     benchmark_array)
    rank0 = FundRank().rank_fund_array2(fund_pct,
                                        bench_pct,
                                        fund_code,
                                        date_array,
                                        "灵活配置型基金_30",
                                        excess=False)
    rank1 = FundRank().rank_fund_array2(fund_pct,
                                        bench_pct,
                                        fund_code,
                                        date_array,
                                        "wind",
                                        excess=False)
    performance_table = pd.concat([performance_table, rank0, rank1], axis=0)

    col_number = 1
    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 读取基金和基准时间序列
    ###########################################################################################
    fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)

    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(
        setup_date, end_date)

    benchmark_data = Index().get_index_factor(benchmark_code_2, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return2 = fs.get_bencnmark_cum_return_series(setup_date, end_date)

    # 写入基金和基准时间序列
    ###########################################################################################
    cum_return = pd.concat([cum_return, cum_return2], axis=1)
    cum_return.columns = [fund_name, benchmark_name, benchmark_name_2]
    cum_return = cum_return.dropna()

    num_format_pd = pd.DataFrame([],
                                 columns=cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 基金和基准时间序列图
    ###########################################################################################
    chart_name = fund_name + "累计收益(成立以来)"
    series_name = [fund_name, benchmark_name, benchmark_name_2]
    insert_pos = 'B12'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos,
                                      sheet_name)
    excel.close()
    ###########################################################################################
    return True
Ejemplo n.º 14
0
    def fund_score(self, fund_code, fund_name, end_date, rank_pool, mg_date, fund_type, my_index_code):

        """ 计算基金得分 """

        # index_code = "881001.WI"
        # fund_code = "162208.OF"
        # end_date = "20181231"
        # rank_pool = "普通股票型基金"
        # mg_date = "20141121"
        # fund_type = "行业基金"
        # my_index_code = "FTSE成长"

        end_date = Date().change_to_datetime(end_date)
        before_1y = datetime(year=end_date.year, month=1, day=1).strftime("%Y%m%d")
        before_3y = datetime(year=end_date.year-2, month=1, day=1).strftime("%Y%m%d")
        before_3y = max(before_3y, "20160101")
        before_5y = datetime(year=end_date.year-4, month=1, day=1).strftime("%Y%m%d")
        before_5y = max(before_5y, "20160101")
        mg_date = max(mg_date, "20160101")
        end_date = Date().change_to_str(end_date)

        result = pd.DataFrame([], columns=["名称", "1年收益", "1年排名", "1年排名百分比", "1年得分",
                                           "3年收益", "3年排名", "3年排名百分比", "3年得分",
                                           "5年收益", "5年排名", "5年排名百分比", "5年得分"
                                           ])

        result.loc[fund_code, "名称"] = fund_name
        beg_date = before_1y
        fund_nav = MfcData().get_mfc_public_fund_nav(fund_code)
        fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ']))
        result.loc[fund_code, "1年收益"] = fs.get_interval_return(beg_date, end_date)
        str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, beg_date, excess=False)
        result.loc[fund_code, "1年排名百分比"] = pct
        result.loc[fund_code, "1年排名"] = str_rank
        result.loc[fund_code, "1年得分"] = self.score(pct)

        beg_date = before_3y
        fund_nav = MfcData().get_mfc_public_fund_nav(fund_code)
        fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ']))
        result.loc[fund_code, "3年收益"] = fs.get_interval_return(beg_date, end_date)
        str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, beg_date, excess=False)
        result.loc[fund_code, "3年排名百分比"] = pct
        result.loc[fund_code, "3年排名"] = str_rank
        result.loc[fund_code, "3年得分"] = self.score(pct)

        beg_date = before_5y
        fund_nav = MfcData().get_mfc_public_fund_nav(fund_code)
        fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ']))
        result.loc[fund_code, "5年收益"] = fs.get_interval_return(beg_date, end_date)
        str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, beg_date, excess=False)
        result.loc[fund_code, "5年排名百分比"] = pct
        result.loc[fund_code, "5年排名"] = str_rank
        result.loc[fund_code, "5年得分"] = self.score(pct)

        beg_date = mg_date
        fund_nav = MfcData().get_mfc_public_fund_nav(fund_code)
        fs = FinancialSeries(pd.DataFrame(fund_nav['NAV_ADJ']))
        result.loc[fund_code, "管理以来收益"] = fs.get_interval_return(beg_date, end_date)
        str_rank, pct = FundRank().rank_fund(fund_code, rank_pool, beg_date, end_date, beg_date, excess=False)
        result.loc[fund_code, "管理以来排名"] = str_rank
        result.loc[fund_code, "管理以来排名百分比"] = pct
        result.loc[fund_code, "管理以来得分"] = self.score(pct)
        print(result)
        return result
def write_public_lh(end_date, save_path):

    # 参数
    ###########################################################################################
    fund_name = '泰达宏利量化增强'
    fund_code = '001733.OF'
    fund_type = "公募"

    benchmark_code = '000905.SH'
    benchmark_name = '中证500'
    benchmark_ratio = 0.95

    setup_date = '20160830'
    date_array = np.array(
        [["2019年", '20190101', end_date, '20180930'],
         ["2018年", "20180101", '20181231', "20170930"],
         ["2017年", "20170101", '20171231', "20160930"],
         ["2016年", setup_date, "20161231", setup_date],
         ["成立(20160830)以来", setup_date, end_date, setup_date]])

    benchmark_array = np.array([["沪深300", "000300.SH"], ["中证500", "000905.SH"],
                                ["股票型基金", '885012.WI'], ["创业板指", '399006.SZ'],
                                ["WIND全A", '881001.WI']])

    from quant.fund.fund import Fund
    fund_pct = Fund().get_fund_factor("Repair_Nav_Pct")
    bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100

    # 准备文件
    ###########################################################################################
    file_name = os.path.join(save_path, "OutFile", fund_name + '.xlsx')
    sheet_name = fund_name
    excel = WriteExcel(file_name)
    worksheet = excel.add_worksheet(sheet_name)

    # 写入基金表现 和基金排名
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_sample(
        fund_name, fund_code, fund_type, date_array, benchmark_array)
    rank0 = FundRank().rank_fund_array2(fund_pct,
                                        bench_pct,
                                        fund_code,
                                        date_array,
                                        "中证500基金",
                                        excess=False)
    rank1 = FundRank().rank_fund_array2(fund_pct,
                                        bench_pct,
                                        fund_code,
                                        date_array,
                                        "普通股票型基金",
                                        excess=False)
    # rank2 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "中证500基金", excess=True)
    # rank3 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "指数增强型基金", excess=True)

    performance_table = pd.concat([performance_table, rank0, rank1], axis=0)

    col_number = 1
    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 写入增强基金表现
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_enhanced_fund(
        fund_name, fund_code, fund_type, date_array, benchmark_code,
        benchmark_name, benchmark_ratio)

    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 读取基金和基准时间序列
    ###########################################################################################
    fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)
    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data),
                         benchmark_ratio)

    # 写入超额收益时间序列
    ###########################################################################################
    excess_cum_return = fs.get_cum_excess_return_series(setup_date, end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=excess_cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(excess_cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 超额收益图
    ###########################################################################################
    chart_name = fund_name + "累计超额收益(成立以来)"
    insert_pos = 'B16'
    excel.line_chart_one_series_with_linear_plot(worksheet, 0, col_number,
                                                 excess_cum_return, chart_name,
                                                 insert_pos, sheet_name)

    col_number = col_number + excess_cum_return.shape[1] + 2

    # 写入基金收益时间序列
    ###########################################################################################
    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(
        setup_date, end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 写入基金收益时间序列图
    ############################################################################################
    series_name = [fund_name, benchmark_name]
    chart_name = fund_name + "累计收益(成立以来)"
    insert_pos = 'B32'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos,
                                      sheet_name)
    excel.close()
    ###########################################################################################
    return True
def write_public_zz500_adjust(end_date, save_path):

    # 参数
    ###########################################################################################
    fund_name_adjust = '泰达宏利中证500_adjust'
    fund_code_adjust = '162216.OF_adjust'
    fund_name = '泰达宏利中证500'
    fund_code = '162216.OF'
    fund_type = "公募"

    benchmark_code = '000905.SH'
    benchmark_name = '中证500'
    benchmark_ratio = 0.95

    setup_date = '20141003'
    today = datetime.strptime(end_date, "%Y%m%d")
    before_1y = datetime(year=today.year - 1, month=today.month,
                         day=today.day).strftime("%Y%m%d")
    before_2y = datetime(year=today.year - 2, month=today.month,
                         day=today.day).strftime("%Y%m%d")
    before_3y = datetime(year=today.year - 3, month=today.month,
                         day=today.day).strftime("%Y%m%d")

    date_array = np.array([
        ["2019年", '20190101', end_date, '20180930'],
        ["2018年", "20180101", '20181231', "20170930"],
        ["2017年", "20170101", '20171231', "20160930"],
        ["2016年", "20160101", "20161231", "20150930"],
        ["2015年", "20150101", "20151231", "20150101"],
        ["管理(20141003)以来", setup_date, end_date, setup_date],
        ["2015年以来", "20150101", end_date, setup_date],
        ["过去1年", before_1y, end_date, before_1y],
        ["过去2年", before_2y, end_date, before_2y],
        ["过去3年", before_3y, end_date, before_3y],
    ])

    benchmark_array = np.array([["沪深300", "000300.SH"], ["中证500", "000905.SH"],
                                ["WIND全A", '881001.WI']])

    from quant.fund.fund import Fund
    fund_pct = Fund().get_fund_factor("Repair_Nav_Pct")
    bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100

    # 准备文件
    ###########################################################################################
    file_name = os.path.join(save_path, "OutFile", fund_name_adjust + '.xlsx')
    sheet_name = fund_name_adjust
    excel = WriteExcel(file_name)
    worksheet = excel.add_worksheet(sheet_name)

    # 写入基金表现 和基金排名
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_sample(
        fund_name, fund_code, fund_type, date_array, benchmark_array)
    # rank0 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "wind", excess=False)
    # rank1 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "被动指数型基金", excess=True)
    rank2 = FundRank().rank_fund_array2(fund_pct,
                                        bench_pct,
                                        fund_code,
                                        date_array,
                                        "中证500基金",
                                        excess=False)
    performance_table = pd.concat([performance_table, rank2], axis=0)

    col_number = 1
    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 写入增强基金表现
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_enhanced_fund(
        fund_name, fund_code, fund_type, date_array, benchmark_code,
        benchmark_name, benchmark_ratio)

    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 读取基金和基准时间序列
    ###########################################################################################
    fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)

    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data),
                         benchmark_ratio)

    # 写入超额收益时间序列
    ###########################################################################################
    excess_cum_return = fs.get_cum_excess_return_series("20150101", end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=excess_cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(excess_cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 超额收益图
    ###########################################################################################
    chart_name = fund_name + "累计超额收益(2015年以来)"
    insert_pos = 'B12'
    excel.line_chart_one_series_with_linear_plot(worksheet, 0, col_number,
                                                 excess_cum_return, chart_name,
                                                 insert_pos, sheet_name)

    col_number = col_number + excess_cum_return.shape[1] + 2

    # 写入基金收益时间序列
    ###########################################################################################
    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(
        "20150101", end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 写入基金收益时间序列图
    ############################################################################################
    series_name = [fund_name, benchmark_name]
    chart_name = fund_name + "累计收益(2015年以来)"
    insert_pos = 'B26'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos,
                                      sheet_name)
    excel.close()
    ###########################################################################################
    return True
Ejemplo n.º 17
0
def write_quant12(end_date, save_path):

    # 参数
    ###########################################################################################
    fund_name = '光大量化组合12号'
    fund_code = fund_name
    fund_type = "专户"

    benchmark_code = "000905.SH"
    benchmark_name = "中证500"

    setup_date = "20160714"
    date_array = np.array([["2019年", '20190101', end_date],
                           ["2018年", "20180101", '20181231'],
                           ["2017年", "20170101", '20171231'],
                           ["成立(20160714)至2016年末", setup_date, '20161231'],
                           ["成立(20160714)以来", setup_date, end_date]])

    benchmark_array = np.array([["沪深300", "000300.SH"],
                                ["中证500", "000905.SH"],
                                ["股票型基金", '885012.WI'],
                                ["WIND全A", '881001.WI']])
    from quant.fund.fund import Fund
    fund_pct = Fund().get_fund_factor("Repair_Nav_Pct")
    bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100

    # 准备文件
    ###########################################################################################
    file_name = os.path.join(save_path, "OutFile", fund_name + '.xlsx')
    sheet_name = fund_name
    excel = WriteExcel(file_name)
    worksheet = excel.add_worksheet(sheet_name)

    # 写入基金表现 和基金排名
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_sample(fund_name, fund_code, fund_type, date_array, benchmark_array)
    col_number = 1
    num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number,
                       num_format_pd=num_format_pd, color="red", fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 写入增强基金表现
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_enhanced_fund(fund_name, fund_code,
                                                        fund_type, date_array, benchmark_code, benchmark_name)

    num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number,
                       num_format_pd=num_format_pd, color="red", fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 读取基金和基准时间序列
    ###########################################################################################
    fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)

    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))

    # 写入超额收益时间序列
    ###########################################################################################
    excess_cum_return = fs.get_cum_excess_return_series(setup_date, end_date)

    num_format_pd = pd.DataFrame([], columns=excess_cum_return.columns, index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(excess_cum_return, worksheet, begin_row_number=0, begin_col_number=col_number,
                       num_format_pd=num_format_pd, color="blue", fillna=True)

    # 超额收益图
    ###########################################################################################
    chart_name = fund_name + "累计超额收益(成立以来)"
    insert_pos = 'B12'
    excel.line_chart_one_series_with_linear_plot(worksheet, 0, col_number, excess_cum_return,
                                                 chart_name, insert_pos, sheet_name)

    col_number = col_number + excess_cum_return.shape[1] + 2

    # 写入基金收益时间序列
    ###########################################################################################
    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(setup_date, end_date)

    num_format_pd = pd.DataFrame([], columns=cum_return.columns, index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return, worksheet, begin_row_number=0, begin_col_number=col_number,
                       num_format_pd=num_format_pd, color="blue", fillna=True)

    # 写入基金收益时间序列图
    ############################################################################################
    series_name = [fund_name, benchmark_name]
    chart_name = fund_name + "累计收益(成立以来)"
    insert_pos = 'B26'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos, sheet_name)
    excel.close()
    ###########################################################################################
    return True
Ejemplo n.º 18
0
    def cal_summary_period(self, beg_date=None, end_date=None):
        """
        计算组合在区间内 收益率、波动率等表现情况
        并画图并存储图片
        """

        self.get_port_return()
        if beg_date is None:
            beg_date = self.port_return.index[0]
        if end_date is None:
            end_date = self.port_return.index[-1]

        fs = FinancialSeries(
            pd.DataFrame(self.port_return["CumPortReturn"] + 1.0),
            pd.DataFrame(self.port_return["CumIndexReturn"] + 1.0))

        port_return = self.port_return.loc[beg_date:end_date, :]
        result = pd.DataFrame([])
        beg_date = port_return.index[0]
        end_date = port_return.index[-1]
        label = str(beg_date)[0:4] + '年'
        result.loc[label, '开始时间'] = beg_date
        result.loc[label, '结束时间'] = end_date
        result.loc[label, "收益率"] = fs.get_interval_return(beg_date, end_date)
        result.loc[label, "年化收益率"] = fs.get_interval_return_annual(
            beg_date, end_date)
        result.loc[label,
                   "年化波动率"] = fs.get_interval_std_annual(beg_date, end_date)
        result.loc[label, "年化跟踪误差"] = fs.get_interval_tracking_error(
            beg_date, end_date)
        result.loc[label,
                   "最大回撤率"] = fs.get_interval_max_drawdown(beg_date, end_date)
        result.loc[label, "超额收益率"] = fs.get_interval_excess_return(
            beg_date, end_date)
        result.loc[label, "年化超额收益率"] = fs.get_interval_excess_return_annual(
            beg_date, end_date)
        result.loc[label,
                   "超额收益率最大回撤"] = fs.get_interval_excess_return_max_drawdown(
                       beg_date, end_date)
        result.loc[label, "基准收益率"] = fs.get_interval_return_benchmark(
            beg_date, end_date)
        result.loc[label, "基准年化收益率"] = fs.get_interval_return_annual_benchmark(
            beg_date, end_date)
        result.loc[label, "基准年化波动率"] = fs.get_interval_std_annual_benchmark(
            beg_date, end_date)
        result.loc[label, "基准最大回撤率"] = fs.get_interval_max_drawdown_benchmark(
            beg_date, end_date)
        self.plot_port_return_period(beg_date, end_date)
        return result.T
Ejemplo n.º 19
0
def write_zlhl2018(end_date, save_path):

    # 参数
    ###########################################################################################
    fund_name = '广州农商行梓霖惠利1号'
    fund_code = fund_name
    fund_type = "专户"

    benchmark_code = '885007.WI'
    benchmark_name = "混合债券二级基金指数"
    benchmark_code_2 = "H11001.CSI"
    benchmark_name_2 = "中证全债指数"

    setup_date = '20180628'
    date_array = np.array([["2019年", '20190101', end_date],
                           ["2018年", "20180101", '20181231'],
                           ["20180628以来", '20180628', end_date]])

    benchmark_array = np.array([["沪深300", "000300.SH"], ["中证500", "000905.SH"],
                                ["股票型基金", '885012.WI'],
                                ["混合债券二级基金指数", '885007.WI'],
                                ["中证全债指数", "H11001.CSI"]])

    from quant.fund.fund import Fund
    fund_pct = Fund().get_fund_factor("Repair_Nav_Pct")
    bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100

    # 准备文件
    ###########################################################################################
    file_name = os.path.join(save_path, "OutFile", fund_name + '2018年.xlsx')
    sheet_name = fund_name
    excel = WriteExcel(file_name)
    worksheet = excel.add_worksheet(sheet_name)

    # 写入增强基金表现 相对基准
    ###########################################################################################
    col_number = 1
    performance_table = MfcTable().cal_summary_table_enhanced_fund(
        fund_name, fund_code, fund_type, date_array, benchmark_code,
        benchmark_name)
    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 写入增强基金表现  相对指数
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_enhanced_fund(
        fund_name, fund_code, fund_type, date_array, benchmark_code_2,
        benchmark_name_2)

    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 写入基金绝对表现
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table(fund_name, fund_code,
                                                     fund_type, date_array,
                                                     benchmark_array)
    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 读取基金和基准时间序列
    ###########################################################################################
    fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)

    # 写入基金和基准收益时间序列 相对基准
    ###########################################################################################
    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(
        setup_date, end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 基金和基准收益图 相对基准
    ###########################################################################################
    series_name = [fund_name, benchmark_name]
    chart_name = fund_name + "相对" + benchmark_name + " 累计超额收益(成立以来)"
    insert_pos = 'B16'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos,
                                      sheet_name)

    col_number = col_number + cum_return.shape[1] + 2

    # 写入基金和基准收益时间序列 相对指数
    ###########################################################################################
    benchmark_data = Index().get_index_factor(benchmark_code_2, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(
        setup_date, end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 基金和基准收益图 相对指数
    ###########################################################################################
    series_name = [fund_name, benchmark_name_2]
    chart_name = fund_name + "相对" + benchmark_name_2 + " 累计超额收益(成立以来)"
    insert_pos = 'B32'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos,
                                      sheet_name)
    excel.close()
    ###########################################################################################
    return True
Ejemplo n.º 20
0
def write_public_fxwy(end_date, save_path):

    # 参数
    ###########################################################################################
    fund_name = '泰达宏利复兴伟业'
    fund_code = '001170.OF'
    fund_type = "公募"

    benchmark_code = '885001.WI'
    benchmark_name = '偏股混合基金总指数'
    benchmark_code_2 = "000300.SH"
    benchmark_name_2 = "沪深300"
    benchmark_ratio = 0.95

    setup_date = '20150421'  # 吴华开始管理 也是成立日
    today = datetime.strptime(end_date, "%Y%m%d")
    before_1y = datetime(year=today.year-1, month=today.month, day=today.day).strftime("%Y%m%d")
    before_2y = datetime(year=today.year-2, month=today.month, day=today.day).strftime("%Y%m%d")
    before_3y = datetime(year=today.year-3, month=today.month, day=today.day).strftime("%Y%m%d")
    before_5y = datetime(year=today.year-5, month=today.month, day=today.day).strftime("%Y%m%d")

    date_array = np.array([["2019年", '20190101', end_date, '20180930'],
                           ["2018年", "20180101", '20181231', "20170930"],
                           ["2017年", "20170101", '20171231', "20160930"],
                           ["2016年", '20160101', '20161231', "20150930"],
                           ["成立以来(吴华管理)", setup_date, end_date, setup_date],
                           ["过去1年", before_1y, end_date, before_1y],
                           ["过去2年", before_2y, end_date, before_2y],
                           ["过去3年", before_3y, end_date, before_3y],
                           ])

    benchmark_array = np.array([["沪深300", "000300.SH"],
                                ["中证500", "000905.SH"],
                                ["股票型基金总指数", '885012.WI'],
                                ["WIND全A", '881001.WI']])

    from quant.fund.fund import Fund
    fund_pct = Fund().get_fund_factor("Repair_Nav_Pct")
    bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100

    # 准备文件
    ###########################################################################################
    file_name = os.path.join(save_path, "OutFile", fund_name + '.xlsx')
    sheet_name = fund_name
    excel = WriteExcel(file_name)
    worksheet = excel.add_worksheet(sheet_name)

    # 写入基金表现 和基金排名
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_sample(fund_name, fund_code, fund_type, date_array, benchmark_array)
    rank1 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "偏股混合型基金", excess=False)
    rank2 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "灵活配置型基金_60", excess=False)
    rank3 = FundRank().rank_fund_array2(fund_pct, bench_pct, fund_code, date_array, "股票+灵活配置60型基金", excess=False)
    performance_table = pd.concat([performance_table, rank1, rank2, rank3], axis=0)

    col_number = 1
    num_format_pd = pd.DataFrame([], columns=performance_table.columns, index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table, worksheet, begin_row_number=0, begin_col_number=col_number,
                       num_format_pd=num_format_pd, color="red", fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 读取基金和基准时间序列
    ###########################################################################################
    fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)

    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(setup_date, end_date)

    benchmark_data = Index().get_index_factor(benchmark_code_2, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return2 = fs.get_bencnmark_cum_return_series(setup_date, end_date)

    # 写入基金和基准时间序列
    ###########################################################################################
    cum_return = pd.concat([cum_return, cum_return2], axis=1)
    cum_return.columns = [fund_name, benchmark_name, benchmark_name_2]
    cum_return = cum_return.dropna()

    num_format_pd = pd.DataFrame([], columns=cum_return.columns, index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return, worksheet, begin_row_number=0, begin_col_number=col_number,
                       num_format_pd=num_format_pd, color="blue", fillna=True)

    # 基金和基准时间序列图
    ###########################################################################################
    chart_name = fund_name + "累计收益(管理以来)"
    series_name = [fund_name, benchmark_name, benchmark_name_2]
    insert_pos = 'B12'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos, sheet_name)
    excel.close()
    ###########################################################################################
    return True
Ejemplo n.º 21
0
def write_rs_500(end_date, save_path):

    ###########################################################################################
    fund_name = '建行中国人寿中证500管理计划'
    fund_code = fund_name
    fund_type = "专户"

    benchmark_code = "中证500全收益指数80%+固定收益1%"
    benchmark_name = "中证500全收益指数80%+固定收益1%"
    benchmark_code_2 = 'H00905.CSI'
    benchmark_name_2 = "中证500全收益指数"

    setup_date = '20151021'
    date_array = np.array([["2019年", '20190101', end_date],
                           ["2018年", "20180101", '20181231'],
                           ['20171110至今', "20171110", end_date],
                           ["2017年", "20170101", '20171231'],
                           ["2016年", "2016001", '20161231'],
                           ["2016年以来", "20160101", end_date],
                           ["成立以来", setup_date, end_date]])

    benchmark_array = np.array(
        [["中证500全收益指数80%+固定收益1%", "中证500全收益指数80%+固定收益1%"],
         ["中证500", "000905.SH"], ["中证500全收益", 'H00905.CSI']])

    from quant.fund.fund import Fund
    fund_pct = Fund().get_fund_factor("Repair_Nav_Pct")
    bench_pct = Fund().get_fund_factor("Fund_Bench_Pct") * 100

    # 准备文件
    ###########################################################################################
    file_name = os.path.join(save_path, "OutFile", fund_name + '.xlsx')
    sheet_name = fund_name
    excel = WriteExcel(file_name)
    worksheet = excel.add_worksheet(sheet_name)

    # 写入增强基金表现 相对基准
    ###########################################################################################
    col_number = 1
    performance_table = MfcTable().cal_summary_table_enhanced_fund(
        fund_name, fund_code, fund_type, date_array, benchmark_code,
        benchmark_name)

    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 写入增强基金表现  相对指数
    ###########################################################################################
    performance_table = MfcTable().cal_summary_table_enhanced_fund(
        fund_name, fund_code, fund_type, date_array, benchmark_code_2,
        benchmark_name_2)

    num_format_pd = pd.DataFrame([],
                                 columns=performance_table.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(performance_table,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="red",
                       fillna=True)
    col_number = col_number + performance_table.shape[1] + 2

    # 读取基金和基准时间序列
    ###########################################################################################
    fund_data = MfcData().get_mfc_nav(fund_code, fund_name, fund_type)

    # 写入基金和基准收益时间序列 相对基准
    ###########################################################################################
    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(
        setup_date, end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 基金和基准收益图 相对基准
    ###########################################################################################
    series_name = [fund_name, benchmark_name]
    chart_name = fund_name + "相对基准(全收益80%+1%)累计超额收益(成立以来)"
    insert_pos = 'B16'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos,
                                      sheet_name)

    col_number = col_number + cum_return.shape[1] + 2

    daliy_return = fs.get_fund_benchmark_daily_return_series(
        setup_date, end_date)
    num_format_pd = pd.DataFrame([],
                                 columns=daliy_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(daliy_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    col_number = col_number + cum_return.shape[1] + 2

    # 写入基金和基准收益时间序列 相对基准
    ###########################################################################################
    benchmark_data = Index().get_index_factor(benchmark_code, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(
        "20160101", end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 基金和基准收益图 相对基准
    ###########################################################################################
    series_name = [fund_name, benchmark_name]
    chart_name = fund_name + "相对基准(全收益80%+1%)累计超额收益(2016年以来)"
    insert_pos = 'B32'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos,
                                      sheet_name)

    col_number = col_number + cum_return.shape[1] + 2

    # 写入基金和基准收益时间序列 相对指数
    ###########################################################################################
    benchmark_data = Index().get_index_factor(benchmark_code_2, attr=["CLOSE"])
    fs = FinancialSeries(pd.DataFrame(fund_data), pd.DataFrame(benchmark_data))
    cum_return = fs.get_fund_and_bencnmark_cum_return_series(
        setup_date, end_date)

    num_format_pd = pd.DataFrame([],
                                 columns=cum_return.columns,
                                 index=['format'])
    num_format_pd.ix['format', :] = '0.00%'
    excel.write_pandas(cum_return,
                       worksheet,
                       begin_row_number=0,
                       begin_col_number=col_number,
                       num_format_pd=num_format_pd,
                       color="blue",
                       fillna=True)

    # 基金和基准收益图 相对指数
    ###########################################################################################
    series_name = [fund_name, benchmark_name_2]
    chart_name = fund_name + "相对500全收益指数累计超额收益(成立以来)"
    insert_pos = 'B48'
    excel.line_chart_time_series_plot(worksheet, 0, col_number, cum_return,
                                      series_name, chart_name, insert_pos,
                                      sheet_name)
    excel.close()
    ###########################################################################################
    return True