Ejemplo n.º 1
0
    def load_fund_factor(self, factor_name, beg_date, end_date):

        beg_date = Date().change_to_str(beg_date)
        end_date = Date().change_to_str(end_date)
        new_data = FinDb().load_raw_data_filter_period(factor_name, beg_date,
                                                       end_date)
        fund_info_data = FundStatic().get_fund_info()
        val_name = Parameter().get_load_findb_val_name(factor_name)

        new_data = pd.merge(new_data, fund_info_data, on="证券内码", how='inner')
        new_data = pd.DataFrame(
            new_data[val_name].values,
            index=[list(new_data['基金代码'].values),
                   list(new_data['日期'].values)])
        new_data = new_data.sort_index()
        new_data = new_data[~new_data.index.duplicated()]
        new_data = new_data.unstack()

        new_data.columns = new_data.columns.droplevel(level=0)
        new_data = new_data.T
        new_data = new_data.dropna(how='all')
        new_data.index = new_data.index.map(str)

        out_file = Parameter().get_read_file(factor_name)
        if os.path.exists(out_file):
            data = pd.read_csv(out_file, encoding='gbk', index_col=[0])
            data.index = data.index.map(str)
            data = pandas_add_row(data, new_data)
        else:
            print(" File No Exist ", factor_name)
            data = new_data
        data = data.dropna(how='all')
        data.to_csv(out_file)
Ejemplo n.º 2
0
def GetAllFundAllDateFactorAlphaFile(in_path, out_path, factor_name_list,
                                     date_series):

    # params
    ####################################################################################

    # in_path = 'E:\\3_Data\\4_fund_data\\7_fund_select_stock\\StockAlpha\\'
    # out_path = 'E:\\3_Data\\4_fund_data\\7_fund_select_stock\\FundSelectStockAlpha\\'
    #
    # factor_name_list = ["TotalMarketValue", "BP", "IncomeYOYDaily", "ROETTMDaily", "Industry"]
    #
    # beg_date = "20170530"
    # end_date = "20180630"
    # date_series = Date().get_normal_date_series(beg_date, end_date, "S")

    if not os.path.exists(out_path):
        os.makedirs(out_path)

    # read data
    ####################################################################################
    fund_holding_all = Fund().get_fund_holding_all()

    # cal alpha
    ####################################################################################
    for i_factor in range(len(factor_name_list)):

        factor_name = factor_name_list[i_factor]
        stock_alpha = GetStockAlphaAtFactorFile(in_path, factor_name)

        for i_date in range(len(date_series)):

            report_date = date_series[i_date]
            fund_holding_date = fund_holding_all[fund_holding_all['Date'] ==
                                                 report_date]
            alpha_date = GetAllFundAlphaOnFactorFile(stock_alpha,
                                                     fund_holding_date,
                                                     factor_name, report_date)
            if i_date == 0:
                new_data = alpha_date
            else:
                new_data = pd.concat([new_data, alpha_date], axis=1)

        new_data = new_data.T.dropna(how="all")
        filename = os.path.join(out_path,
                                'FundSelectStockAlpha_' + factor_name + '.csv')
        if os.path.exists(filename):
            old_data = pd.read_csv(filename, index_col=[0], encoding='gbk')
            old_data.index = old_data.index.map(str)
            result = pandas_add_row(old_data, new_data)
        else:
            result = new_data
        result.to_csv(filename)
Ejemplo n.º 3
0
def stock_ratio_10(beg_date, end_date):

    factor_name = "Stock_Ratio_10"
    fund_holder = Fund().get_fund_holding_all()

    quarter_date = Date().get_last_fund_quarter_date(end_date)

    position_all = Fund().get_fund_factor("Stock_Ratio", date_list=[quarter_date], fund_pool=None).T
    position_all.columns = ['Stock_Weight']
    position_all = position_all[position_all['Stock_Weight'] > 65]

    code_list = list(position_all.index)
    date_list = Date().get_normal_date_series(beg_date=beg_date, end_date=end_date, period="Q")

    code_list.sort()
    date_list.sort()

    new_data = pd.DataFrame([], index=code_list, columns=date_list)

    for i_date in range(len(date_list)):

        for i_fund in range(len(code_list)):

            fund_code = code_list[i_fund]
            date = date_list[i_date]

            holder = fund_holder[fund_holder.FundCode == fund_code]
            holder = holder[holder.Date == date]
            holder = holder.sort_values(by=['Weight'], ascending=False)
            holder = holder.reset_index(drop=True)

            if len(holder) >= 10:
                holder = holder.ix[0:10, :]
                new_data.ix[fund_code, date] = holder.Weight.sum()
                print("计算 %s 在 %s 的前10大重仓股票为 %s" % (fund_code, date, holder.Weight.sum()))

    out_file = Parameter().get_read_file(factor_name)

    if os.path.exists(out_file):
        data = pd.read_csv(out_file, encoding='gbk', index_col=[0])
        data.index = data.index.map(str)
        data = pandas_add_row(data, new_data)
    else:
        print(" File No Exist ", factor_name)
        data = new_data

    data.to_csv(out_file)
Ejemplo n.º 4
0
    def cal_index_exposure_period(self, index_code="000300.SH",
                                  beg_date="20031231", end_date=datetime.today().strftime("%Y%m%d"),
                                  period="D"):

        date_series_daily = Date().get_trade_date_series(beg_date, end_date, period=period)

        for i_date in range(len(date_series_daily)):

            date = date_series_daily[i_date]
            res = self.cal_index_exposure_date(index_code, date)

            if i_date == 0:
                new_data = res
            else:
                new_data = pd.concat([new_data, res], axis=0)

        out_file = os.path.join(self.path,  "Index_Barra_Exposure_" + index_code + '.csv')
        if os.path.exists(out_file):
            data = pd.read_csv(out_file, encoding='gbk', index_col=[0])
            data.index = data.index.map(str)
            data = pandas_add_row(data, new_data)
        else:
            data = new_data
        data.to_csv(out_file)
Ejemplo n.º 5
0
def GetAllStockAllDateAlpha(path, factor_name_list, date_series):

    ####################################################################################
    # path = 'E:\\3_Data\\4_fund_data\\7_fund_select_stock\\FundSelectStockAlpha\\'
    # factor_name_list = ["TotalMarketValue", "BP", "IncomeYOYDaily", "ROETTMDaily"]
    # beg_date = "20170530"
    # end_date = "20180630"
    # date_series = Date().get_normal_date_series(beg_date, end_date, "S")

    # params
    ####################################################################################
    code_list = Stock().get_all_stock_code_now()
    if not os.path.exists(path):
        os.makedirs(path)

    # read data
    ####################################################################################
    industry = Stock().get_factor_h5("industry_citic1", None, "primary_mfc")
    price = Stock().get_factor_h5("PriceCloseAdjust", None, 'alpha_dfc')

    # cal fund alpha all date all fund all factor
    ####################################################################################
    for i_factor in range(len(factor_name_list)):

        factor_name = factor_name_list[i_factor]
        factor = Stock().get_factor_h5(factor_name, None, "alpha_dfc")
        new_data = pd.DataFrame([], index=code_list, columns=date_series)

        for i_date in range(len(date_series)):
            report_date = date_series[i_date]
            for i_stock in range(len(code_list)):
                code = code_list[i_stock]
                alpha = GetStockAlphaAtFactor(factor, price, code, report_date)
                new_data.ix[code, report_date] = alpha
                print(code, report_date, factor_name, alpha)

        new_data = new_data.T.dropna(how="all")
        filename = os.path.join(path, 'StockAlpha_' + factor_name + '.csv')
        if os.path.exists(filename):
            old_data = pd.read_csv(filename, index_col=[0], encoding='gbk')
            old_data.index = old_data.index.map(str)
            result = pandas_add_row(old_data, new_data)
        else:
            result = new_data
        result.to_csv(filename)

    # cal fund alpha all date all fund on industry
    ####################################################################################
    factor_name = "Industry"
    new_data = pd.DataFrame([], index=code_list, columns=date_series)

    for i_date in range(len(date_series)):
        report_date = date_series[i_date]
        for i_stock in range(len(code_list)):
            code = code_list[i_stock]
            alpha = GetStockAlphaAtIndustry(industry, price, code, report_date)
            new_data.ix[code, report_date] = alpha
            print(code, report_date, factor_name, alpha)

    new_data = new_data.T.dropna(how="all")
    filename = os.path.join(path, 'StockAlpha_' + factor_name + '.csv')
    if os.path.exists(filename):
        old_data = pd.read_csv(filename, index_col=[0], encoding='gbk')
        old_data.index = old_data.index.map(str)
        result = pandas_add_row(old_data, new_data)
    else:
        result = new_data
    result.to_csv(filename)
Ejemplo n.º 6
0
    # GetAllStockAllDateAlpha(path, factor_name_list, date_series)

    code_list = Stock().get_all_stock_code_now()
    if not os.path.exists(path):
        os.makedirs(path)

    # read data
    ####################################################################################
    industry = Stock().get_factor_h5("industry_citic2", None, "primary_mfc")
    price = Stock().get_factor_h5("PriceCloseAdjust", None, 'alpha_dfc')
    factor_name = "Industry2"
    new_data = pd.DataFrame([], index=code_list, columns=date_series)

    for i_date in range(len(date_series)):
        report_date = date_series[i_date]
        for i_stock in range(len(code_list)):
            code = code_list[i_stock]
            alpha = GetStockAlphaAtIndustry(industry, price, code, report_date)
            new_data.ix[code, report_date] = alpha
            print(code, report_date, factor_name, alpha)

    new_data = new_data.T.dropna(how="all")
    filename = os.path.join(path, 'StockAlpha_' + factor_name + '.csv')
    if os.path.exists(filename):
        old_data = pd.read_csv(filename, index_col=[0], encoding='gbk')
        old_data.index = old_data.index.map(str)
        result = pandas_add_row(old_data, new_data)
    else:
        result = new_data
    result.to_csv(filename)
Ejemplo n.º 7
0
    def cal_fund_holder_exposure(self, fund, beg_date, end_date):

        # 每半年计算一次
        type_list = ['STYLE', 'COUNTRY', 'INDUSTRY']
        date_series = Date().get_normal_date_series(beg_date,
                                                    end_date,
                                                    period='S')

        for i_date in range(len(date_series)):

            date = date_series[i_date]
            report_date = Date().get_normal_date_month_end_day(date)
            trade_date = Date().get_trade_date_month_end_day(date)

            barra_name = list(
                Barra().get_factor_name(type_list)['NAME_EN'].values)
            barra_exposure = Barra().get_factor_exposure_date(
                trade_date, type_list)
            fund_holding = FundHolder().get_fund_holding_report_date_fund(
                fund, report_date)
            print("########## Calculate Holder Exposure %s %s ##########" %
                  (fund, report_date))

            if (barra_exposure is None) or (fund_holding is None):
                exposure_add = pd.DataFrame([],
                                            columns=barra_name,
                                            index=[report_date])
            else:
                fund_holding = fund_holding['Weight']
                data = pd.concat([fund_holding, barra_exposure], axis=1)
                data = data.dropna()

                if (len(data) == 0) or (data is None):
                    exposure_add = pd.DataFrame([],
                                                columns=barra_name,
                                                index=[report_date])
                else:
                    exposure_add = pd.DataFrame([],
                                                columns=barra_name,
                                                index=[report_date])

                    for i_factor in range(len(barra_name)):
                        factor_name = barra_name[i_factor]
                        data_weight = data[['Weight', factor_name]]
                        data_weight['StockExposure'] = data['Weight'] * data[
                            factor_name]
                        exposure_add.ix[report_date,
                                        factor_name] = data_weight[
                                            'StockExposure'].sum() / 100.0

            if i_date == 0:
                exposure_new = exposure_add
            else:
                exposure_new = pd.concat([exposure_new, exposure_add], axis=0)

        # 合并新数据
        ####################################################################
        out_path = Parameter().get_read_file(self.holder_exposure_name)
        out_file = os.path.join(out_path,
                                'Fund_Holder_Exposure_' + fund + '.csv')

        if os.path.exists(out_file):
            exposure_old = pd.read_csv(out_file, index_col=[0], encoding='gbk')
            exposure_old.index = exposure_old.index.map(str)
            params = pandas_add_row(exposure_old, exposure_new)
        else:
            params = exposure_new
        params.to_csv(out_file)
Ejemplo n.º 8
0
    def cal_fund_regression_exposure(self,
                                     fund,
                                     beg_date,
                                     end_date,
                                     period="M"):

        # 参数
        ####################################################################
        up_style_exposure = 1.5
        up_position_exposure = 0.95
        low_position_exposure = 0.75
        position_sub = 0.10

        beg_date = Date().change_to_str(beg_date)
        end_date = Date().change_to_str(end_date)

        # 取得数据
        ####################################################################
        type_list = ['STYLE', 'COUNTRY']

        barra_name = list(Barra().get_factor_name(type_list)['NAME_EN'].values)
        barra_return = Barra().get_factor_return(None, None, type_list)

        date_series = Date().get_trade_date_series(beg_date,
                                                   end_date,
                                                   period=period)
        fund_return = FundFactor().get_fund_factor("Repair_Nav_Pct", None,
                                                   [fund])

        data = pd.concat([fund_return, barra_return], axis=1)
        data = data.dropna()
        print(" Fund Code Total Len %s " % len(data))
        factor_number = len(barra_name)

        # 循环回归计算每天的暴露
        ####################################################################

        for i_date in range(0, len(date_series)):

            period_end_date = date_series[i_date]
            period_beg_date = Date().get_trade_date_offset(
                period_end_date, -self.regression_period)

            period_date_series = Date().get_trade_date_series(
                period_beg_date, period_end_date)
            data_periods = data.ix[period_date_series, :]
            data_periods = data_periods.dropna()

            quarter_date = Date().get_last_fund_quarter_date(period_end_date)
            stock_ratio = (FundFactor().get_fund_factor(
                "Stock_Ratio", [quarter_date], [fund]) / 100).values[0][0]
            print(
                "########## Calculate Regression Exposure %s %s %s %s %s %s ##########"
                % (fund, period_beg_date, period_end_date, quarter_date,
                   len(data_periods), stock_ratio))

            if len(data_periods) > self.regression_period_min:

                y = data_periods.ix[:, 0].values
                x = data_periods.ix[:, 1:].values
                x_add = sm.add_constant(x)

                low_position_exposure = max(stock_ratio - position_sub,
                                            low_position_exposure)
                print(low_position_exposure)

                P = 2 * np.dot(x_add.T, x_add)
                Q = -2 * np.dot(x_add.T, y)

                G_up = np.diag(np.ones(factor_number + 1))
                G_low = -np.diag(np.ones(factor_number + 1))
                G = np.row_stack((G_up, G_low))
                h_up = np.row_stack((np.ones(
                    (factor_number, 1)) * up_style_exposure,
                                     np.array([up_position_exposure])))
                h_low = np.row_stack((np.ones(
                    (factor_number, 1)) * up_style_exposure,
                                      np.array([-low_position_exposure])))
                h = np.row_stack((h_up, h_low))

                P = matrix(P)
                Q = matrix(Q)
                G = matrix(G)
                h = matrix(h)
                try:
                    result = sol.qp(P, Q, G, h)
                    params_add = pd.DataFrame(np.array(result['x'][1:]),
                                              columns=[period_end_date],
                                              index=barra_name).T
                    print(params_add)
                except:
                    params_add = pd.DataFrame([],
                                              columns=[period_end_date],
                                              index=barra_name).T
                    print(params_add)

            else:
                params_add = pd.DataFrame([],
                                          columns=[period_end_date],
                                          index=barra_name).T
                print(params_add)

            if i_date == 0:
                params_new = params_add
            else:
                params_new = pd.concat([params_new, params_add], axis=0)

        # 合并新数据
        ####################################################################
        out_path = Parameter().get_read_file(self.regression_exposure_name)
        out_file = os.path.join(out_path,
                                'Fund_Regression_Exposure_' + fund + '.csv')

        if os.path.exists(out_file):
            params_old = pd.read_csv(out_file, index_col=[0], encoding='gbk')
            params_old.index = params_old.index.map(str)
            params = pandas_add_row(params_old, params_new)
        else:
            params = params_new
        print(params)
        params.to_csv(out_file)