Ejemplo n.º 1
0
    def test_transformation_in_different_basis(self):
        """(LINDBLAD) Testing transformations into different bases

        """
        #Manager().warn_about_basis_change = True
        #Manager().warn_about_basis_changing_objects = True

        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True, name="LT1")
        LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False, name="LT2")

        rho0 = ReducedDensityMatrix(dim=self.H1.dim, name="ahoj")
        with eigenbasis_of(self.H1):
            rho0.data[1, 1] = 0.7
            rho0.data[0, 0] = 0.3

        with eigenbasis_of(self.H1):
            rhot1_e = LT1.apply(rho0, copy=True)

        with eigenbasis_of(self.H1):
            rhot2_e = LT2.apply(rho0, copy=True)

        rhot1_l = LT1.apply(rho0, copy=True)
        rhot2_l = LT2.apply(rho0, copy=True)

        numpy.testing.assert_allclose(rhot1_l.data, rhot1_e.data)
        numpy.testing.assert_allclose(rhot2_l.data, rhot2_e.data)
        numpy.testing.assert_allclose(rhot1_e.data,
                                      rhot2_e.data)  #, rtol=1.0e-2)
Ejemplo n.º 2
0
    def test_propagation_in_different_basis(self):
        """(LINDBLAD) Testing comparison of propagations in different bases

        """

        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)
        LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False)

        time = TimeAxis(0.0, 1000, 1.0)

        prop1 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop2 = ReducedDensityMatrixPropagator(time, self.H1, LT2)

        rho0 = ReducedDensityMatrix(dim=self.H1.dim)
        rho0.data[1, 1] = 1.0

        with eigenbasis_of(self.H1):
            rhot1_e = prop1.propagate(rho0)

        with eigenbasis_of(self.H1):
            rhot2_e = prop2.propagate(rho0)

        rhot1_l = prop1.propagate(rho0)
        rhot2_l = prop2.propagate(rho0)

        numpy.testing.assert_allclose(rhot1_l.data, rhot1_e.data)
        numpy.testing.assert_allclose(rhot2_l.data, rhot2_e.data)
        numpy.testing.assert_allclose(rhot1_e.data,
                                      rhot2_e.data)  #, rtol=1.0e-2)
Ejemplo n.º 3
0
    def test_transformation_in_different_basis(self):
        """(LINDBLAD) Testing transformations into different bases

        """
        #Manager().warn_about_basis_change = True
        #Manager().warn_about_basis_changing_objects = True
        
        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True, name="LT1")
        LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False, name="LT2")

        rho0 = ReducedDensityMatrix(dim=self.H1.dim, name="ahoj")
        with eigenbasis_of(self.H1):
            rho0.data[1,1] = 0.7
            rho0.data[0,0] = 0.3
                
          
        with eigenbasis_of(self.H1):
            rhot1_e = LT1.apply(rho0, copy=True)
            
        with eigenbasis_of(self.H1):
            rhot2_e = LT2.apply(rho0, copy=True)

        rhot1_l = LT1.apply(rho0, copy=True)
        rhot2_l = LT2.apply(rho0, copy=True)
            
        numpy.testing.assert_allclose(rhot1_l.data, rhot1_e.data)
        numpy.testing.assert_allclose(rhot2_l.data, rhot2_e.data)
        numpy.testing.assert_allclose(rhot1_e.data, rhot2_e.data) #, rtol=1.0e-2) 
Ejemplo n.º 4
0
    def test_propagation_in_different_basis(self):
        """(LINDBLAD) Testing comparison of propagations in different bases

        """

        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)
        LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False)
        
        time = TimeAxis(0.0, 1000, 1.0)
        
        prop1 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop2 = ReducedDensityMatrixPropagator(time, self.H1, LT2)
        
        rho0 = ReducedDensityMatrix(dim=self.H1.dim)
        rho0.data[1,1] = 1.0
          
        with eigenbasis_of(self.H1):
            rhot1_e = prop1.propagate(rho0)
            
        with eigenbasis_of(self.H1):
            rhot2_e = prop2.propagate(rho0)

        rhot1_l = prop1.propagate(rho0)
        rhot2_l = prop2.propagate(rho0)
            
        numpy.testing.assert_allclose(rhot1_l.data, rhot1_e.data)
        numpy.testing.assert_allclose(rhot2_l.data, rhot2_e.data)
        numpy.testing.assert_allclose(rhot1_e.data, rhot2_e.data) #, rtol=1.0e-2) 
Ejemplo n.º 5
0
    def test_trace_over_vibrations(self):
        """Testing trace over vibrational DOF
        
        """
        
        agg = self.vagg
        
        ham = agg.get_Hamiltonian()
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[5, 5] = 1.0
        redr = agg.trace_over_vibrations(rho)
        
        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=7)
        
        N = agg.Nb[0]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=3)


        N = agg.Nb[1]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=2)
Ejemplo n.º 6
0
    def test_conversion_2_populations(self):
        """Testing conversion of reduced density matrix to population vector
        
        
        """

        rdm = ReducedDensityMatrix(
            data=[[0.5, 0.0, 0.1], [0.0, 0.3, 0.0], [0.1, 0.0, 0.2]])

        pop = rdm.get_populations()

        self.assertTrue(numpy.allclose(pop, [0.5, 0.3, 0.2]))
Ejemplo n.º 7
0
 def test_conversion_2_populations(self):
     """Testing conversion of reduced density matrix to population vector
     
     
     """
     
     rdm = ReducedDensityMatrix(data=[[0.5, 0.0, 0.1],
                                      [0.0, 0.3, 0.0],
                                      [0.1, 0.0, 0.2]])
                                      
     pop = rdm.get_populations()
     
     self.assertTrue(numpy.allclose(pop,[0.5,0.3,0.2]))
Ejemplo n.º 8
0
 def test_comparison_with_and_without_vib(self):
     """Testing ElectronicLindbladForm in propagation
     
     """
     
     # Lindblad forms
     LT = ElectronicLindbladForm(self.ham, self.sbi, as_operators=False)
     vLT = ElectronicLindbladForm(self.vham, self.vsbi, as_operators=False)
    
     # Propagators
     time = TimeAxis(0.0, 1000, 1.0)
     el_prop = ReducedDensityMatrixPropagator(time, self.ham, LT)
     vib_prop = ReducedDensityMatrixPropagator(time, self.vham, vLT)
     
     # electronic initial condition
     rho0 = ReducedDensityMatrix(dim=self.ham.dim)
     rho0.data[2,2] = 1.0
     
     # vibronic intial condition
     vrho0 = ReducedDensityMatrix(dim=self.vham.dim)
     agg = self.vsbi.system
     Nin = agg.vibindices[2][0]
     vrho0.data[Nin, Nin] = 1.0
     
     # propagations
     rhot = el_prop.propagate(rho0)
     vrhot = vib_prop.propagate(vrho0)
     
     # averaging over vibrational level at t=0
     Nel = agg.Nel
     
     aver_vrhot0 = agg.trace_over_vibrations(vrho0) 
             
     # Test
     numpy.testing.assert_allclose(rhot._data[0,:,:], rho0._data)
     numpy.testing.assert_allclose(rhot._data[0,:,:], aver_vrhot0._data)
     
     aver_vrhot10 = agg.trace_over_vibrations(vrhot, 10)
     numpy.testing.assert_allclose(rhot._data[10,:,:], 
                                      aver_vrhot10._data)        
  
     aver_vrhot800 = agg.trace_over_vibrations(vrhot, 800)
     numpy.testing.assert_allclose(rhot._data[800,:,:], 
                                      aver_vrhot800._data)        
     
Ejemplo n.º 9
0
 def test_saveable(self):
     """Testing reduced density matrix as Saveable
     
     
     """
     
     rdm = ReducedDensityMatrix(data=[[0.5, 0.0, 0.1],
                                      [0.0, 0.3, 0.0],
                                      [0.1, 0.0, 0.2]])
                      
     #import h5py
           
     #with h5py.File("test_file_operators",driver="core", 
     #                   backing_store=False) as fid:
     import tempfile
     with tempfile.TemporaryFile() as fid:
         
         rdm.save(fid) #, test=True)
         fid.seek(0)
         
         rdm2 = ReducedDensityMatrix()
         
         rdm2 = rdm2.load(fid) #, test=True)
     
     self.assertTrue(numpy.allclose(rdm2.data,rdm.data))
                                 
Ejemplo n.º 10
0
    def test_comparison_of_dynamics(self):
        """Testing site basis dynamics by Lindblad

        """

        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)
        LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False)
        
        time = TimeAxis(0.0, 1000, 1.0)
        
        prop1 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop2 = ReducedDensityMatrixPropagator(time, self.H1, LT2)
        
        rho0 = ReducedDensityMatrix(dim=self.H1.dim)
        rho0.data[1,1] = 1.0
          
        rhot1 = prop1.propagate(rho0)
        rhot2 = prop2.propagate(rho0)
        
        numpy.testing.assert_allclose(rhot1.data,rhot2.data) #, rtol=1.0e-2) 
Ejemplo n.º 11
0
    def test_comparison_of_dynamics(self):
        """Testing site basis dynamics by Lindblad

        """

        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)
        LT2 = LindbladForm(self.H1, self.sbi1, as_operators=False)

        time = TimeAxis(0.0, 1000, 1.0)

        prop1 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop2 = ReducedDensityMatrixPropagator(time, self.H1, LT2)

        rho0 = ReducedDensityMatrix(dim=self.H1.dim)
        rho0.data[1, 1] = 1.0

        rhot1 = prop1.propagate(rho0)
        rhot2 = prop2.propagate(rho0)

        numpy.testing.assert_allclose(rhot1.data, rhot2.data)  #, rtol=1.0e-2)
Ejemplo n.º 12
0
    def test_trace_over_vibrations(self):
        """(Aggregate) Testing trace over vibrational DOF
        
        """
        
        agg = self.vagg
        
        ham = agg.get_Hamiltonian()
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[5, 5] = 1.0
        redr = agg.trace_over_vibrations(rho)
        
        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=7)
        
        N = agg.Nb[0]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=3)


        N = agg.Nb[1]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=2)
Ejemplo n.º 13
0
    def test_comparison_with_and_without_vib(self):
        """Testing ElectronicLindbladForm in propagation
        
        """

        # Lindblad forms
        LT = ElectronicLindbladForm(self.ham, self.sbi, as_operators=False)
        vLT = ElectronicLindbladForm(self.vham, self.vsbi, as_operators=False)

        # Propagators
        time = TimeAxis(0.0, 1000, 1.0)
        el_prop = ReducedDensityMatrixPropagator(time, self.ham, LT)
        vib_prop = ReducedDensityMatrixPropagator(time, self.vham, vLT)

        # electronic initial condition
        rho0 = ReducedDensityMatrix(dim=self.ham.dim)
        rho0.data[2, 2] = 1.0

        # vibronic intial condition
        vrho0 = ReducedDensityMatrix(dim=self.vham.dim)
        agg = self.vsbi.system
        Nin = agg.vibindices[2][0]
        vrho0.data[Nin, Nin] = 1.0

        # propagations
        rhot = el_prop.propagate(rho0)
        vrhot = vib_prop.propagate(vrho0)

        # averaging over vibrational level at t=0
        Nel = agg.Nel

        aver_vrhot0 = agg.trace_over_vibrations(vrho0)

        # Test
        numpy.testing.assert_array_equal(rhot._data[0, :, :], rho0._data)
        numpy.testing.assert_array_equal(rhot._data[0, :, :],
                                         aver_vrhot0._data)

        aver_vrhot10 = agg.trace_over_vibrations(vrhot, 10)
        numpy.testing.assert_array_equal(rhot._data[10, :, :],
                                         aver_vrhot10._data)

        aver_vrhot800 = agg.trace_over_vibrations(vrhot, 800)
        numpy.testing.assert_array_equal(rhot._data[800, :, :],
                                         aver_vrhot800._data)
Ejemplo n.º 14
0
ham = vagg.get_Hamiltonian()
print("Hamiltonian dimension: ", ham.dim)
print("Constructing electronic Lindblad form")
eLF = ElectronicLindbladForm(ham, vsbi, as_operators=True)
print("...done")

time = TimeAxis(0.0, 1000, 1.0)

from quantarhei.qm import ReducedDensityMatrixPropagator

vibprop = ReducedDensityMatrixPropagator(time, ham, eLF)

from quantarhei.qm import ReducedDensityMatrix

rho0 = ReducedDensityMatrix(dim=ham.dim)
Ni = vagg.vibindices[3][0]
rho0.data[Ni, Ni] = 1.0

print("Density matrix propagation: ")
rhot = vibprop.propagate(rho0)
print("...done")

print("\nThe same but NO vibrational modes")

m1v = Molecule([0.0, 1.0])
m2v = Molecule([0.0, 1.1])
m3v = Molecule([0.0, 1.2])

vagg2 = Aggregate(molecules=[m1v, m2v, m3v])
vagg2.build()
Ejemplo n.º 15
0
    def test_comparison_of_exciton_dynamics(self):
        """Testing exciton basis dynamics by Lindblad

        """
        
        # site basis form to be compared with
        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)
        
        # exciton basis forms
        LT13 = LindbladForm(self.H3, self.sbi3, as_operators=True)
        LT23 = LindbladForm(self.H3, self.sbi3, as_operators=False)

        LT4e = LindbladForm(self.H4, self.sbi4e, as_operators=True)
        LT4s = LindbladForm(self.H4s, self.sbi4s, as_operators=True)
        
        time = TimeAxis(0.0, 1000, 1.0)
        
        #
        # Propagators
        #
        prop0 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop1 = ReducedDensityMatrixPropagator(time, self.H3, LT13)
        prop2 = ReducedDensityMatrixPropagator(time, self.H3, LT23)
        prop4e = ReducedDensityMatrixPropagator(time, self.H4, LT4e)
        prop4s = ReducedDensityMatrixPropagator(time, self.H4s, LT4s)        

        # 
        # Initial conditions
        #
        rho0 = ReducedDensityMatrix(dim=self.H3.dim)
        rho0c = ReducedDensityMatrix(dim=self.H1.dim) # excitonic
        with eigenbasis_of(self.H3):
            rho0c.data[1,1] = 1.0
        rho0.data[1,1] = 1.0
        
        rho04e = ReducedDensityMatrix(dim=self.H4.dim)
        rho04s = ReducedDensityMatrix(dim=self.H4.dim)
        with eigenbasis_of(self.H4):
            rho04e.data[2,2] = 1.0
        rho04s.data[2,2] = 1.0        
          
        #
        # Propagations
        #
        rhotc = prop0.propagate(rho0c)
        rhot1 = prop1.propagate(rho0)
        rhot2 = prop2.propagate(rho0)
        
        rhot4e = prop4e.propagate(rho04e)
        rhot4s = prop4s.propagate(rho04s)
        
        # propagation with operator- and tensor forms should be the same
        numpy.testing.assert_allclose(rhot1.data,rhot2.data) #, rtol=1.0e-2) 

        #
        # Population time evolution by Lindblad is independent 
        # of the level structure and basis, as long as I compare
        # populations in basis in which the Lindblad form was defined
        #

        P = numpy.zeros((2, time.length))
        Pc = numpy.zeros((2, time.length))
        
        P4e = numpy.zeros((3, time.length))
        P4s = numpy.zeros((3, time.length))
        
        with eigenbasis_of(self.H3):
            for i in range(time.length):
                P[0,i] = numpy.real(rhot1.data[i,0,0])  # population of exciton 0
                P[1,i] = numpy.real(rhot1.data[i,1,1])  # population of exciton 1
                

        for i in range(time.length):
            Pc[0,i] = numpy.real(rhotc.data[i,0,0])  # population of exciton 0
            Pc[1,i] = numpy.real(rhotc.data[i,1,1])  # population of exciton 1
        
        # we compare populations
        numpy.testing.assert_allclose(Pc,P) #, rtol=1.0e-2) 

        with eigenbasis_of(self.H4):
            for i in range(time.length):
                P4e[0,i] = numpy.real(rhot4e.data[i,0,0])  # population of exciton 0
                P4e[1,i] = numpy.real(rhot4e.data[i,1,1])  # population of exciton 1
                P4e[2,i] = numpy.real(rhot4e.data[i,2,2])  # population of exciton 1

        for i in range(time.length):
            P4s[0,i] = numpy.real(rhot4s.data[i,0,0])  # population of exciton 0
            P4s[1,i] = numpy.real(rhot4s.data[i,1,1])  # population of exciton 1
            P4s[2,i] = numpy.real(rhot4s.data[i,2,2])  # population of exciton 1

        
#        import matplotlib.pyplot as plt
        #
#        plt.plot(time.data,P4s[0,:], "-r")
#        plt.plot(time.data,P4s[1,:], "-r")
#        plt.plot(time.data,P4s[2,:], "-r")
#        plt.plot(time.data,P4e[0,:], "-g")
#        plt.plot(time.data,P4e[1,:], "-g")
#        plt.plot(time.data,P4e[2,:], "-g")
        
#        plt.show()

        numpy.testing.assert_allclose(P4e, P4s, atol=1.0e-8) 
Ejemplo n.º 16
0
from quantarhei.qm import ElectronicLindbladForm

ham = vagg.get_Hamiltonian()
print("Hamiltonian dimension: ", ham.dim)
print("Constructing electronic Lindblad form")
eLF = ElectronicLindbladForm(ham, vsbi, as_operators=True)
print("...done")

time = TimeAxis(0.0, 1000, 1.0)

from quantarhei.qm import ReducedDensityMatrixPropagator
vibprop = ReducedDensityMatrixPropagator(time, ham, eLF)

from quantarhei.qm import ReducedDensityMatrix
rho0 = ReducedDensityMatrix(dim=ham.dim)
Ni = vagg.vibindices[3][0]
rho0.data[Ni, Ni] = 1.0

print("Density matrix propagation: ")
rhot = vibprop.propagate(rho0)
print("...done")

print("\nThe same but NO vibrational modes")

m1v = Molecule([0.0, 1.0])
m2v = Molecule([0.0, 1.1])
m3v = Molecule([0.0, 1.2])

vagg2 = Aggregate(molecules=[m1v, m2v, m3v])
vagg2.build()
Ejemplo n.º 17
0
    def test_comparison_of_exciton_dynamics(self):
        """Testing exciton basis dynamics by Lindblad

        """

        # site basis form to be compared with
        LT1 = LindbladForm(self.H1, self.sbi1, as_operators=True)

        # exciton basis forms
        LT13 = LindbladForm(self.H3, self.sbi3, as_operators=True)
        LT23 = LindbladForm(self.H3, self.sbi3, as_operators=False)

        LT4e = LindbladForm(self.H4, self.sbi4e, as_operators=True)
        LT4s = LindbladForm(self.H4s, self.sbi4s, as_operators=True)

        time = TimeAxis(0.0, 1000, 1.0)

        #
        # Propagators
        #
        prop0 = ReducedDensityMatrixPropagator(time, self.H1, LT1)
        prop1 = ReducedDensityMatrixPropagator(time, self.H3, LT13)
        prop2 = ReducedDensityMatrixPropagator(time, self.H3, LT23)
        prop4e = ReducedDensityMatrixPropagator(time, self.H4, LT4e)
        prop4s = ReducedDensityMatrixPropagator(time, self.H4s, LT4s)

        #
        # Initial conditions
        #
        rho0 = ReducedDensityMatrix(dim=self.H3.dim)
        rho0c = ReducedDensityMatrix(dim=self.H1.dim)  # excitonic
        with eigenbasis_of(self.H3):
            rho0c.data[1, 1] = 1.0
        rho0.data[1, 1] = 1.0

        rho04e = ReducedDensityMatrix(dim=self.H4.dim)
        rho04s = ReducedDensityMatrix(dim=self.H4.dim)
        with eigenbasis_of(self.H4):
            rho04e.data[2, 2] = 1.0
        rho04s.data[2, 2] = 1.0

        #
        # Propagations
        #
        rhotc = prop0.propagate(rho0c)
        rhot1 = prop1.propagate(rho0)
        rhot2 = prop2.propagate(rho0)

        rhot4e = prop4e.propagate(rho04e)
        rhot4s = prop4s.propagate(rho04s)

        # propagation with operator- and tensor forms should be the same
        numpy.testing.assert_allclose(rhot1.data, rhot2.data)  #, rtol=1.0e-2)

        #
        # Population time evolution by Lindblad is independent
        # of the level structure and basis, as long as I compare
        # populations in basis in which the Lindblad form was defined
        #

        P = numpy.zeros((2, time.length))
        Pc = numpy.zeros((2, time.length))

        P4e = numpy.zeros((3, time.length))
        P4s = numpy.zeros((3, time.length))

        with eigenbasis_of(self.H3):
            for i in range(time.length):
                P[0, i] = numpy.real(rhot1.data[i, 0,
                                                0])  # population of exciton 0
                P[1, i] = numpy.real(rhot1.data[i, 1,
                                                1])  # population of exciton 1

        for i in range(time.length):
            Pc[0, i] = numpy.real(rhotc.data[i, 0,
                                             0])  # population of exciton 0
            Pc[1, i] = numpy.real(rhotc.data[i, 1,
                                             1])  # population of exciton 1

        # we compare populations
        numpy.testing.assert_allclose(Pc, P)  #, rtol=1.0e-2)

        with eigenbasis_of(self.H4):
            for i in range(time.length):
                P4e[0,
                    i] = numpy.real(rhot4e.data[i, 0,
                                                0])  # population of exciton 0
                P4e[1,
                    i] = numpy.real(rhot4e.data[i, 1,
                                                1])  # population of exciton 1
                P4e[2,
                    i] = numpy.real(rhot4e.data[i, 2,
                                                2])  # population of exciton 1

        for i in range(time.length):
            P4s[0, i] = numpy.real(rhot4s.data[i, 0,
                                               0])  # population of exciton 0
            P4s[1, i] = numpy.real(rhot4s.data[i, 1,
                                               1])  # population of exciton 1
            P4s[2, i] = numpy.real(rhot4s.data[i, 2,
                                               2])  # population of exciton 1


#        import matplotlib.pyplot as plt
#
#        plt.plot(time.data,P4s[0,:], "-r")
#        plt.plot(time.data,P4s[1,:], "-r")
#        plt.plot(time.data,P4s[2,:], "-r")
#        plt.plot(time.data,P4e[0,:], "-g")
#        plt.plot(time.data,P4e[1,:], "-g")
#        plt.plot(time.data,P4e[2,:], "-g")

#        plt.show()

        numpy.testing.assert_allclose(P4e, P4s, atol=1.0e-8)
Ejemplo n.º 18
0
#for n in range(4):
#    print(numpy.real(RT.data[n,n,5,5]))
#
#RR = RedfieldRateMatrix(HH,sbi)
#for n in range(4):
#    print(numpy.real(RR.data[n,5]))    

"""

    IMPLEMENT AG.get_initial_RDM()

"""
# Sets an initial population of sites according to the transition dipole
#AG.set_impulsive_population()
rho = ReducedDensityMatrix(dim=HH.dim)
#rho.data = AG.rho0
#rho.data[0,0] = 1.0
rho.data[HH.dim-1,HH.dim-1] = 1.0
#rho.data[1,0] = 0.5
#rho.data[0,1] = 0.5
rho.normalize2()


print("Propagating density matrix ...")
start = tm.time()
# Convert to exciton basis in which RT was calculated 
ss = HH.diagonalize()  # Relaxation tensors are defined in the eigenstate basis
prop = RDMPropagator(time,HH,RTensor=RT)
#prop.setDtRefinement(10)
Ejemplo n.º 19
0
    def test_trace_over_vibrations(self):
        """(Aggregate) Testing trace over vibrational DOF
        
        """

        agg = self.vagg

        ham = agg.get_Hamiltonian()

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[5, 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=7)

        N = agg.Nb[0]

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N + 5, N + 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=3)

        N = agg.Nb[1]

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N + 5, N + 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=2)

        rho = ReducedDensityMatrix(dim=ham.dim)
        n_part = 1. / (agg.Nb[0])
        for state_ind in range(agg.Nb[0]):
            rho._data[state_ind, state_ind] = n_part

        redr = agg.trace_over_vibrations(rho)
        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=7)