Ejemplo n.º 1
0
def make_rate_helper(market, quote, reference_date=None):
    """
    Wrapper for deposit and swaps rate helpers makers
    TODO: class method of RateHelper?
    """

    rate_type, tenor, quote_value = quote

    if rate_type == 'SWAP':
        libor_index = market._floating_rate_index
        spread = SimpleQuote(0)
        fwdStart = Period(0, Days)
        helper = SwapRateHelper.from_tenor(
            quote_value, Period(tenor),
            market._floating_rate_index.fixing_calendar,
            Period(market._params.fixed_leg_period).frequency,
            BusinessDayConvention.from_name(
                market._params.fixed_leg_convention),
            DayCounter.from_name(market._params.fixed_leg_daycount),
            libor_index, spread, fwdStart)
    elif rate_type == 'DEP':
        end_of_month = True
        helper = DepositRateHelper(
            quote_value, Period(tenor), market._params.settlement_days,
            market._floating_rate_index.fixing_calendar,
            market._floating_rate_index.business_day_convention, end_of_month,
            DayCounter.from_name(market._deposit_daycount))
    elif rate_type == 'ED':
        if reference_date is None:
            raise Exception("Reference date needed with ED Futures data")

        forward_date = next_imm_date(reference_date, tenor)

        helper = FuturesRateHelper(
            price=SimpleQuote(quote_value),
            imm_date=qldate_from_pydate(forward_date),
            length_in_months=3,
            calendar=market._floating_rate_index.fixing_calendar,
            convention=market._floating_rate_index.business_day_convention,
            end_of_month=True,
            day_counter=DayCounter.from_name(
                market._params.floating_leg_daycount))
    elif rate_type.startswith('ER'):
        # TODO For Euribor futures, we found it useful to supply the `imm_date`
        # parameter directly, instead of as a number of periods from the
        # evaluation date, as for ED futures. To achieve this, we pass the
        # `imm_date` in the `tenor` field of the quote.
        helper = FuturesRateHelper(
            price=SimpleQuote(quote_value),
            imm_date=tenor,
            length_in_months=3,
            calendar=market._floating_rate_index.fixing_calendar,
            convention=market._floating_rate_index.business_day_convention,
            end_of_month=True,
            day_counter=DayCounter.from_name(
                market._params.floating_leg_daycount))
    else:
        raise Exception("Rate type %s not supported" % rate_type)

    return helper
Ejemplo n.º 2
0
def example03():
    print("example 3:\n")
    todays_date = Date(13, 6, 2011)
    Settings.instance().evaluation_date = todays_date
    quotes = [0.00445, 0.00949, 0.01234, 0.01776, 0.01935, 0.02084]
    tenors = [1, 2, 3, 6, 9, 12]
    calendar = WeekendsOnly()
    deps = [
        DepositRateHelper(q, Period(t, Months), 2, calendar, ModifiedFollowing,
                          False, Actual360()) for q, t in zip(quotes, tenors)
    ]
    quotes = [
        0.01652, 0.02018, 0.02303, 0.02525, 0.0285, 0.02931, 0.03017, 0.03092,
        0.03160, 0.03231, 0.03367, 0.03419, 0.03411, 0.03411, 0.03412
    ]
    tenors = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 20, 25, 30]
    swaps = [
        SwapRateHelper.from_tenor(q, Period(t, Years), calendar, Annual,
                                  ModifiedFollowing, Thirty360(), Euribor6M(),
                                  SimpleQuote(0))
        for q, t in zip(quotes, tenors)
    ]
    yield_helpers = deps + swaps
    isda_yts = PiecewiseYieldCurve(BootstrapTrait.Discount,
                                   Interpolator.LogLinear, 0, WeekendsOnly(),
                                   yield_helpers, Actual365Fixed())

    spreads = [0.007927, 0.012239, 0.016979, 0.019271, 0.020860]
    tenors = [1, 3, 5, 7, 10]
    spread_helpers = [SpreadCdsHelper(0.007927, Period(6, Months), 1,
                                      WeekendsOnly(), Quarterly, Following, Rule.CDS2015,
                                      Actual360(), 0.4, isda_yts, True, True,
                                      Date(), Actual360(True), True, PricingModel.ISDA)] + \
    [SpreadCdsHelper(s, Period(t, Years), 1, WeekendsOnly(), Quarterly, Following, Rule.CDS2015,
                     Actual360(), 0.4, isda_yts, True, True, Date(), Actual360(True), True,
                     PricingModel.ISDA)
     for s, t in zip(spreads, tenors)]
    isda_cts = PiecewiseDefaultCurve(ProbabilityTrait.SurvivalProbability,
                                     Interpolator.LogLinear, 0, WeekendsOnly(),
                                     spread_helpers, Actual365Fixed())
    isda_pricer = IsdaCdsEngine(isda_cts, 0.4, isda_yts)
    print("Isda yield curve:")
    for h in yield_helpers:
        d = h.latest_date
        t = isda_yts.time_from_reference(d)
        print(d, t, isda_yts.zero_rate(d, Actual365Fixed()).rate)

    print()
    print("Isda credit curve:")
    for h in spread_helpers:
        d = h.latest_date
        t = isda_cts.time_from_reference(d)
        print(d, t, isda_cts.survival_probability(d))
Ejemplo n.º 3
0
def example02():
    print("example 2:\n")
    todays_date = Date(25, 9, 2014)
    Settings.instance().evaluation_date = todays_date

    calendar = TARGET()
    term_date = calendar.adjust(todays_date + Period(2, Years), Following)
    cds_schedule =  Schedule(todays_date, term_date, Period(Quarterly),
                             WeekendsOnly(), ModifiedFollowing,
                             ModifiedFollowing,
                             date_generation_rule=Rule.CDS)
    for date in cds_schedule:
        print(date)
    print()

    todays_date = Date(21, 10, 2014)
    Settings.instance().evaluation_date = todays_date
    quotes = [0.00006, 0.00045, 0.00081, 0.001840, 0.00256, 0.00337]
    tenors = [1, 2, 3, 6, 9, 12]
    deps = [DepositRateHelper(q, Period(t, Months), 2, calendar, ModifiedFollowing, False, Actual360())
           for q, t in zip(quotes, tenors)]
    tenors = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30]
    quotes = [0.00223, 0.002760, 0.003530, 0.004520, 0.005720, 0.007050, 0.008420, 0.009720, 0.010900,
              0.012870, 0.014970, 0.017, 0.01821]
    swaps = [SwapRateHelper.from_tenor(q, Period(t, Years),
                                       calendar, Annual, ModifiedFollowing,
                                       Thirty360(), Euribor6M(), SimpleQuote(0))
             for q, t in zip(quotes, tenors)]
    helpers = deps + swaps
    YC = PiecewiseYieldCurve.from_reference_date(BootstrapTrait.Discount, Interpolator.LogLinear,
            todays_date, helpers, Actual365Fixed())
    YC.extrapolation = True
    print("ISDA rate curve:")
    for h in helpers:
        print("{0}: {1:.6f}\t{2:.6f}".format(h.latest_date,
                                             YC.zero_rate(h.latest_date, Actual365Fixed(), 2).rate,
                                             YC.discount(h.latest_date)))
    defaultTs0 = FlatHazardRate(0, WeekendsOnly(), 0.016739207493630, Actual365Fixed())
    cds_schedule = Schedule.from_rule(Date(22, 9, 2014), Date(20, 12, 2019), Period(3, Months),
                            WeekendsOnly(), Following, Unadjusted, Rule.CDS, False)
    nominal = 100000000
    trade = CreditDefaultSwap(Side.Buyer, nominal, 0.01, cds_schedule, Following,
                            Actual360(), True, True, Date(22, 10, 2014), Actual360(True), True)
    engine = IsdaCdsEngine(defaultTs0, 0.4, YC, False)
    trade.set_pricing_engine(engine)
    print("reference trade NPV = {0}\n".format(trade.npv))
Ejemplo n.º 4
0
def dividendOption():
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ General Parameter for all the computation +++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    # declaration of the today's date (date where the records are done)
    todaysDate = Date(24, Jan, 2012)  # INPUT
    Settings.instance(
    ).evaluation_date = todaysDate  #!\ IMPORTANT COMMAND REQUIRED FOR ALL VALUATIONS
    calendar = UnitedStates()  # INPUT
    settlement_days = 2  # INPUT
    # Calcul of the settlement date : need to add a period of 2 days to the todays date
    settlementDate = calendar.advance(todaysDate,
                                      period=Period(settlement_days, Days))
    dayCounter = Actual360()  # INPUT
    currency = USDCurrency()  # INPUT

    print("Date of the evaluation:			", todaysDate)
    print("Calendar used:         			", calendar.name)
    print("Number of settlement Days:		", settlement_days)
    print("Date of settlement:       		", settlementDate)
    print("Convention of day counter:		", dayCounter.name())
    print("Currency of the actual context:\t\t", currency.name)

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the underlying +++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    underlying_name = "IBM"
    underlying_price = 191.75  # INPUT
    underlying_vol = 0.2094  # INPUT

    print("**********************************")
    print("Name of the underlying:			", underlying_name)
    print("Price of the underlying at t0:	", underlying_price)
    print("Volatility of the underlying:		", underlying_vol)

    # For a great managing of price and vol objects --> Handle
    underlying_priceH = SimpleQuote(underlying_price)

    # We suppose the vol constant : his term structure is flat --> BlackConstantVol object
    flatVolTS = BlackConstantVol(settlementDate, calendar, underlying_vol,
                                 dayCounter)

    # ++++++++++++++++++++ Description of Yield Term Structure

    #  Libor data record
    print("**********************************")
    print("Description of the Libor used for the Yield Curve construction")

    Libor_dayCounter = Actual360()

    liborRates = []
    liborRatesTenor = []
    # INPUT : all the following data are input : the rate and the corresponding tenor
    #		You could make the choice of more or less data
    #		--> However you have tho choice the instruments with different maturities
    liborRates = [
        0.002763, 0.004082, 0.005601, 0.006390, 0.007125, 0.007928, 0.009446,
        0.01110
    ]
    liborRatesTenor = [
        Period(tenor, Months) for tenor in [1, 2, 3, 4, 5, 6, 9, 12]
    ]

    for tenor, rate in zip(liborRatesTenor, liborRates):
        print(tenor, "\t\t\t", rate)

    # Swap data record

    # description of the fixed leg of the swap
    Swap_fixedLegTenor = Period(12, Months)  # INPUT
    Swap_fixedLegConvention = ModifiedFollowing  # INPUT
    Swap_fixedLegDayCounter = Actual360()  # INPUT
    # description of the float leg of the swap
    Swap_iborIndex = Libor("USDLibor", Period(3, Months), settlement_days,
                           USDCurrency(), UnitedStates(), Actual360())

    print("Description of the Swap used for the Yield Curve construction")
    print("Tenor of the fixed leg:			", Swap_fixedLegTenor)
    print("Index of the floated leg: 		", Swap_iborIndex.name)
    print("Maturity		Rate				")

    swapRates = []
    swapRatesTenor = []
    # INPUT : all the following data are input : the rate and the corresponding tenor
    #		You could make the choice of more or less data
    #		--> However you have tho choice the instruments with different maturities
    swapRates = [
        0.005681, 0.006970, 0.009310, 0.012010, 0.014628, 0.016881, 0.018745,
        0.020260, 0.021545
    ]
    swapRatesTenor = [Period(i, Years) for i in range(2, 11)]

    for tenor, rate in zip(swapRatesTenor, swapRates):
        print(tenor, "\t\t\t", rate)

    # ++++++++++++++++++++ Creation of the vector of RateHelper (need for the Yield Curve construction)
    # ++++++++++++++++++++ Libor
    LiborFamilyName = currency.name + "Libor"
    instruments = []
    for rate, tenor in zip(liborRates, liborRatesTenor):
        # Index description ___ creation of a Libor index
        liborIndex = Libor(LiborFamilyName, tenor, settlement_days, currency,
                           calendar, Libor_dayCounter)
        # Initialize rate helper	___ the DepositRateHelper link the recording rate with the Libor index
        instruments.append(DepositRateHelper(rate, index=liborIndex))

    # +++++++++++++++++++++ Swap
    SwapFamilyName = currency.name + "swapIndex"
    for tenor, rate in zip(swapRatesTenor, swapRates):
        # swap description ___ creation of a swap index. The floating leg is described in the index 'Swap_iborIndex'
        swapIndex = SwapIndex(SwapFamilyName, tenor, settlement_days, currency,
                              calendar, Swap_fixedLegTenor,
                              Swap_fixedLegConvention, Swap_fixedLegDayCounter,
                              Swap_iborIndex)
        # Initialize rate helper __ the SwapRateHelper links the swap index width his rate
        instruments.append(SwapRateHelper.from_index(rate, swapIndex))

    # ++++++++++++++++++  Now the creation of the yield curve

    riskFreeTS = PiecewiseYieldCurve.from_reference_date(
        BootstrapTrait.ZeroYield, Interpolator.Linear, settlementDate,
        instruments, dayCounter)

    # ++++++++++++++++++  build of the underlying process : with a Black-Scholes model

    print('Creating process')

    bsProcess = BlackScholesProcess(underlying_priceH, riskFreeTS, flatVolTS)

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the option +++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    Option_name = "IBM Option"
    maturity = Date(26, Jan, 2013)
    strike = 190
    option_type = 'call'

    # Here, as an implementation exemple, we make the test with borth american and european exercise
    europeanExercise = EuropeanExercise(maturity)
    # The emericanExercise need also the settlement date, as his right to exerce the buy or call start at the settlement date!
    #americanExercise = AmericanExercise(settlementDate, maturity)
    americanExercise = AmericanExercise(maturity, settlementDate)

    print("**********************************")
    print("Description of the option:		", Option_name)
    print("Date of maturity:     			", maturity)
    print("Type of the option:   			", option_type)
    print("Strike of the option:		    ", strike)

    # ++++++++++++++++++ Description of the discrete dividends
    # INPUT You have to determine the frequece and rates of the discrete dividend. Here is a sollution, but she's not the only one.
    # Last know dividend:
    dividend = 0.75  #//0.75
    next_dividend_date = Date(10, Feb, 2012)
    # HERE we have make the assumption that the dividend will grow with the quarterly croissance:
    dividendCroissance = 1.03
    dividendfrequence = Period(3, Months)
    dividendDates = []
    dividends = []

    d = next_dividend_date
    while d <= maturity:
        dividendDates.append(d)
        dividends.append(dividend)
        d = d + dividendfrequence
        dividend *= dividendCroissance

    print("Discrete dividends				")
    print("Dates				Dividends		")
    for date, div in zip(dividendDates, dividends):
        print(date, "		", div)

    # ++++++++++++++++++ Description of the final payoff
    payoff = PlainVanillaPayoff(option_type, strike)

    # ++++++++++++++++++ The OPTIONS : (American and European) with their dividends description:
    dividendEuropeanOption = DividendVanillaOption(payoff, europeanExercise,
                                                   dividendDates, dividends)
    dividendAmericanOption = DividendVanillaOption(payoff, americanExercise,
                                                   dividendDates, dividends)

    # just too test
    europeanOption = VanillaOption(payoff, europeanExercise)
    americanOption = VanillaOption(payoff, americanExercise)

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the pricing  +++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    # For the european options we have a closed analytic formula: The Black Scholes:
    dividendEuropeanEngine = AnalyticDividendEuropeanEngine(bsProcess)

    # For the american option we have make the choice of the finite difference model with the CrankNicolson scheme
    #		this model need to precise the time and space step
    #		More they are greater, more the calul will be precise.
    americanGirdPoints = 600
    americanTimeSteps = 600
    dividendAmericanEngine = FDDividendAmericanEngine('CrankNicolson',
                                                      bsProcess,
                                                      americanTimeSteps,
                                                      americanGirdPoints)

    # just to test
    europeanEngine = AnalyticEuropeanEngine(bsProcess)
    americanEngine = FDAmericanEngine('CrankNicolson', bsProcess,
                                      americanTimeSteps, americanGirdPoints)

    # ++++++++++++++++++++ Valorisation ++++++++++++++++++++++++++++++++++++++++

    # Link the pricing Engine to the option
    dividendEuropeanOption.set_pricing_engine(dividendEuropeanEngine)
    dividendAmericanOption.set_pricing_engine(dividendAmericanEngine)

    # just	to test
    europeanOption.set_pricing_engine(europeanEngine)
    americanOption.set_pricing_engine(americanEngine)

    # Now we make all the needing calcul
    # ... and final results
    print(
        "NPV of the European Option with discrete dividends=0:	{:.4f}".format(
            dividendEuropeanOption.npv))
    print("NPV of the European Option without dividend:		{:.4f}".format(
        europeanOption.npv))
    print(
        "NPV of the American Option with discrete dividends=0:	{:.4f}".format(
            dividendAmericanOption.npv))
    print("NPV of the American Option without dividend:		{:.4f}".format(
        americanOption.npv))
    # just a single test
    print("ZeroRate with a maturity at ", maturity, ": ", \
            riskFreeTS.zero_rate(maturity, dayCounter, Simple))
Ejemplo n.º 5
0
#    deposits[(n,unit)] = SimpleQuote(deposits[(n,unit)])
for n,m in FRAs.keys():
    FRAs[(n,m)] = SimpleQuote(FRAs[(n,m)])
for d in futures.keys():
    futures[d] = SimpleQuote(futures[d])
for s in swaps.keys():
    swaps[s] = SimpleQuote(swaps[s])
#for n,unit in swaps.keys():
#    swaps[(n,unit)] = SimpleQuote(swaps[(n,unit)])

# build rate helpers

day_counter = Actual360()
settlementDays = 2
depositHelpers = [ DepositRateHelper(v,
                                     Period(n,unit), settlementDays,
                                     calendar, ModifiedFollowing,
                                     False, day_counter)
                   for (n, unit), v in deposits.items()]

day_counter = Actual360()
settlementDays = 2
fraHelpers = [ FraRateHelper(v,
                             n, m, settlementDays,
                             calendar, ModifiedFollowing,
                             False, day_counter)
               for (n, m), v in FRAs.items() ]

day_counter = Actual360()
months = 3
futuresHelpers = [ FuturesRateHelper(futures[d],
                                     d, months,