Ejemplo n.º 1
0
        def instance(cls, service_name, service_data, provider, uri,
                     is_remote):
            parameters = util.listify(
                service_data['metadata'].pop('parameters'))

            if len(parameters) > 1:
                cls.params()['parameter'].objects = sorted(parameters)
            else:
                cls.params()['parameter'] = param.String(default=parameters[0],
                                                         doc="""parameter""",
                                                         constant=True)

            self = UserServiceBase(name=service_name, provider=provider)
            self.service_name = service_name
            self.uri = uri
            self.is_remote = is_remote

            self._parameter_map = {p: p for p in parameters}
            for k, v in service_data['metadata'].items():
                setattr(self, k, v)
            self.service_folder = util.listify(service_data['service_folder'])
            if len(self.service_folder) > 1:
                raise ValueError()  # Now only supporting one service folder
            else:
                self.service_folder = self.service_folder[0]
            self.catalog_file = service_data['features']['file']
            self.catalog_file_format = service_data['features']['format']
            self.datasets_mapping = service_data['datasets']['mapping']
            self.datasets_save_folder = service_data['datasets']['save_folder']
            self.datasets_metadata = service_data['datasets'].get(
                'metadata', None)

            return self
Ejemplo n.º 2
0
        def download(self, catalog_id, file_path, dataset, **kwargs):
            if self.datasets_mapping is not None:
                fnames = self.datasets_mapping
                if isinstance(self.datasets_mapping, dict):
                    fnames = self.dataset_mapping[self.parameter]
                fnames = [
                    f.replace('<feature>', catalog_id)
                    for f in util.listify(fnames)
                ]
            else:
                fnames = self.catalog_entries.loc[catalog_id][
                    '_download_url']  # TODO where does self.catalog_entries get initialized?

            final_path = []
            for src, file_name in zip(self._get_paths(fnames), fnames):
                dst = file_path
                if self.datasets_save_folder is not None:
                    dst = os.path.join(dst, self.datasets_save_folder,
                                       self.service_folder)

                dst = os.path.join(dst, file_name)
                base, _ = os.path.split(dst)
                os.makedirs(base, exist_ok=True)
                final_path.append(dst)
                if self.is_remote:
                    with warnings.catch_warnings():
                        warnings.filterwarnings(
                            "ignore",
                            category=requests.packages.urllib3.exceptions.
                            InsecureRequestWarning)
                        r = requests.get(src, verify=False)
                    if r.status_code == 200:  # only download if file exists
                        chunk_size = 64 * 1024
                        with open(dst, 'wb') as f:
                            for content in r.iter_content(chunk_size):
                                f.write(content)
                else:
                    if os.path.exists(src):
                        shutil.copyfile(src, dst)  # only copy if file exists

            # TODO need to deal with parameters if multiple params exist
            if len(final_path) == 1:
                final_path = final_path[0]
            else:
                final_path = ','.join(final_path)

            metadata = {
                'file_path': final_path,
                'file_format': self.file_format,
                'datatype': self.datatype,
                'parameter': self.parameters['parameters'][0],
            }

            if self.datasets_metadata is not None:
                metadata.update(self.datasets_metadata)
            return metadata
Ejemplo n.º 3
0
 def _get_paths(self, filenames):
     folder = self.service_folder
     paths = list()
     for filename in util.listify(filenames):
         if self.uri.startswith('http'):
             paths.append(
                 self.uri.rstrip('/') +
                 '/{}/{}'.format(folder, filename))
         else:
             paths.append(os.path.join(self.uri, folder, filename))
     return paths
Ejemplo n.º 4
0
 def _combine_dicts(self, this, other):
     """Helper function for `get_tags` to combine dictionaries by aggregating values rather than overwriting them.
     """
     for k, other_v in other.items():
         other_v = util.listify(other_v)
         if k in this:
             this_v = this[k]
             if isinstance(this_v, list):
                 other_v.extend(this_v)
             else:
                 other_v.append(this_v)
         this[k] = other_v
Ejemplo n.º 5
0
def points_to_shp(points, shp_file=None):
    """Take a list of coordinates or Shapely Point objects and write them to a ShapeFile.
    """
    points = listify(points)
    test_point = points[0]
    if isinstance(test_point, Point):
        pts = points
    elif isinstance(test_point, list) or isinstance(test_point, tuple):
        pts = [Point(*xy) for xy in points]
    elif isinstance(test_point, float) or isinstance(test_point, int):
        pts = [Point(points)]

    shp_file = shp_file or os.path.join(whitebox_temp_dir, '{}_{}.{}'.format('point', time.time(), 'shp'))
    gdf = gpd.GeoDataFrame(geometry=pts)
    gdf.to_file(shp_file)
    return shp_file
Ejemplo n.º 6
0
    def download(self, catalog_id, file_path, dataset, **kwargs):
        p = param.ParamOverrides(self, kwargs)
        bbox = listify(p.bbox)

        tile_indices = self._get_indices_from_bbox(*bbox,
                                                   zoom_level=p.zoom_level)
        pixel_indices = self._get_indices_from_bbox(*bbox,
                                                    zoom_level=p.zoom_level,
                                                    as_pixels=True)

        tile_bbox = self._get_bbox_from_indices(*tile_indices,
                                                zoom_level=p.zoom_level)
        pixel_bbox = self._get_bbox_from_indices(*pixel_indices,
                                                 zoom_level=p.zoom_level,
                                                 from_pixels=True)

        if p.crop_to_bbox:
            upper_left_corner = tile_bbox[0], tile_bbox[3]
            crop_bbox = self._get_crop_bbox(pixel_indices,
                                            *upper_left_corner,
                                            zoom_level=p.zoom_level)
            adjusted_bbox = pixel_bbox
        else:
            crop_bbox = None
            adjusted_bbox = tile_bbox

        image_array = self._download_and_stitch_tiles(p.url, tile_indices,
                                                      crop_bbox, p.zoom_level,
                                                      p.max_tiles)

        file_path = os.path.join(file_path, dataset + '.tiff')

        self._write_image_to_tif(image_array, adjusted_bbox, file_path)

        metadata = {
            'metadata': {
                'bbox': adjusted_bbox
            },
            'file_path': file_path,
            'file_format': 'raster-gdal',
            'datatype': 'image',
        }

        return metadata
Ejemplo n.º 7
0
    def publish(self, **kwargs):
        p = param.ParamOverrides(self, kwargs)
        valid_file_paths = []
        valid_extensions = []

        if p.resource_type == "":
            raise ValueError("There was no resource type selected.")
        else:
            resource_type = self._resource_type_map[p.resource_type]

        datasets = listify(p.datasets)

        extension_dict = {
            'GeographicFeatureResource': [
                '.zip', '.shp', '.shx', '.dbf', '.prj', '.sbx', '.sbn', '.cpg',
                '.xml', '.fbn', '.fbx', '.ain', '.alh', '.atx', '.ixs', '.mxs'
            ],
            'RasterResource': ['.zip', '.tif'],
            'NetcdfResource': ['.nc'],
            'ScriptResource': ['.r', '.py', '.m'],
            'TimeSeriesResource': ['.sqlite', '.csv']
        }

        if resource_type in [
                'GeographicFeatureResource', 'RasterResource',
                'NetcdfResource', 'ScriptResource', 'TimeSeriesResource'
        ]:
            valid_extensions = extension_dict[resource_type]

        if len(datasets) > 1 and resource_type in [
                'TimeSeriesResource', 'RasterResource'
        ]:
            raise ValueError(
                "The selected resource cannot have more than one dataset.")

        if len(datasets) == 0:
            raise ValueError("There was no dataset selected.")

        for dataset in datasets:
            dataset_metadata = get_metadata(dataset)[dataset]
            fpath = dataset_metadata['file_path']
            filename, file_extension = os.path.splitext(fpath)

            if len(valid_extensions) != 0:
                if file_extension in valid_extensions:
                    valid_file_paths.append(fpath)
                else:
                    raise ValueError(
                        "There was a problem with one of the dataset file extentions for your resource."
                    )
            else:
                valid_file_paths.append(fpath)

        resource_id = self.create_resource(resource_type=resource_type,
                                           title=p.title,
                                           file_path=valid_file_paths[0],
                                           keywords=p.keywords,
                                           abstract=p.abstract)

        for path in valid_file_paths[1:]:
            self.add_file_to_resource(resource_id, path)

        return resource_id
Ejemplo n.º 8
0
        def search_catalog(self, **kwargs):
            fmt = self.catalog_file_format
            paths = self._get_paths(self.catalog_file)

            all_catalog_entries = []

            for p in util.listify(paths):
                with uri_open(p, self.is_remote) as f:
                    if fmt.lower() == 'geojson':
                        catalog_entries = geojson.load(f)
                        catalog_entries = util.to_geodataframe(catalog_entries)

                    if fmt.lower() == 'mbr':
                        # TODO creating FeatureCollection not needed anymore
                        # this can be rewritten as directly creating a pandas dataframe
                        polys = []
                        # skip first line which is a bunding polygon
                        f.readline()
                        for line in f:
                            catalog_id, x1, y1, x2, y2 = line.split()
                            properties = {}
                            polys.append(
                                Feature(geometry=util.bbox2poly(
                                    x1, y1, x2, y2, as_geojson=True),
                                        properties=properties,
                                        id=catalog_id))
                        catalog_entries = FeatureCollection(polys)
                        catalog_entries = util.to_geodataframe(catalog_entries)

                    if fmt.lower() == 'mbr-csv':
                        # TODO merge this with the above,
                        # mbr format from datalibrary not exactly the same as
                        # mbr fromat in quest-demo-data
                        polys = []
                        for line in f:
                            catalog_id, y1, x1, y2, x2 = line.split(',')
                            catalog_id = catalog_id.split('.')[0]
                            properties = {}
                            polys.append(
                                Feature(geometry=util.bbox2poly(
                                    x1, y1, x2, y2, as_geojson=True),
                                        properties=properties,
                                        id=catalog_id))
                        catalog_entries = FeatureCollection(polys)
                        catalog_entries = util.to_geodataframe(catalog_entries)

                    if fmt.lower() == 'isep-json':
                        # uses exported json file from ISEP DataBase
                        # assuming ISEP if a geotypical service for now.
                        catalog_entries = pd.read_json(p)
                        catalog_entries.rename(columns={'_id': 'service_id'},
                                               inplace=True)
                        catalog_entries['download_url'] = catalog_entries[
                            'files'].apply(lambda x: os.path.join(
                                x[0].get('file location'), x[0].get('file name'
                                                                    )))
                        # remove leading slash from file path
                        catalog_entries['download_url'] = catalog_entries[
                            'download_url'].str.lstrip('/')
                        catalog_entries['parameters'] = 'met'

                all_catalog_entries.append(catalog_entries)

            # drop duplicates fails when some columns have nested list/tuples like
            # _geom_coords. so drop based on _service_id
            catalog_entries = pd.concat(all_catalog_entries)
            catalog_entries = catalog_entries.drop_duplicates(
                subset='service_id')
            catalog_entries.index = catalog_entries['service_id']
            catalog_entries.sort_index(inplace=True)
            return catalog_entries