def test_circuit_add_gate(self): from qulacs import QuantumCircuit, QuantumState from qulacs.gate import Identity, X, Y, Z, H, S, Sdag, T, Tdag, sqrtX, sqrtXdag, sqrtY, sqrtYdag from qulacs.gate import P0, P1, U1, U2, U3, RX, RY, RZ, CNOT, CZ, SWAP, TOFFOLI, FREDKIN, Pauli, PauliRotation from qulacs.gate import DenseMatrix, SparseMatrix, DiagonalMatrix, RandomUnitary, ReversibleBoolean, StateReflection from qulacs.gate import BitFlipNoise, DephasingNoise, IndependentXZNoise, DepolarizingNoise, TwoQubitDepolarizingNoise, AmplitudeDampingNoise, Measurement from qulacs.gate import merge, add, to_matrix_gate, Probabilistic, CPTP, Instrument, Adaptive from scipy.sparse import lil_matrix qc = QuantumCircuit(3) qs = QuantumState(3) ref = QuantumState(3) sparse_mat = lil_matrix((4, 4)) sparse_mat[0, 0] = 1 sparse_mat[1, 1] = 1 def func(v, d): return (v + 1) % d def adap(v): return True gates = [ Identity(0), X(0), Y(0), Z(0), H(0), S(0), Sdag(0), T(0), Tdag(0), sqrtX(0), sqrtXdag(0), sqrtY(0), sqrtYdag(0), Probabilistic([0.5, 0.5], [X(0), Y(0)]), CPTP([P0(0), P1(0)]), Instrument([P0(0), P1(0)], 1), Adaptive(X(0), adap), CNOT(0, 1), CZ(0, 1), SWAP(0, 1), TOFFOLI(0, 1, 2), FREDKIN(0, 1, 2), Pauli([0, 1], [1, 2]), PauliRotation([0, 1], [1, 2], 0.1), DenseMatrix(0, np.eye(2)), DenseMatrix([0, 1], np.eye(4)), SparseMatrix([0, 1], sparse_mat), DiagonalMatrix([0, 1], np.ones(4)), RandomUnitary([0, 1]), ReversibleBoolean([0, 1], func), StateReflection(ref), BitFlipNoise(0, 0.1), DephasingNoise(0, 0.1), IndependentXZNoise(0, 0.1), DepolarizingNoise(0, 0.1), TwoQubitDepolarizingNoise(0, 1, 0.1), AmplitudeDampingNoise(0, 0.1), Measurement(0, 1), merge(X(0), Y(1)), add(X(0), Y(1)), to_matrix_gate(X(0)), P0(0), P1(0), U1(0, 0.), U2(0, 0., 0.), U3(0, 0., 0., 0.), RX(0, 0.), RY(0, 0.), RZ(0, 0.), ] gates.append(merge(gates[0], gates[1])) gates.append(add(gates[0], gates[1])) ref = None for gate in gates: qc.add_gate(gate) for gate in gates: qc.add_gate(gate) qc.update_quantum_state(qs) qc = None qs = None for gate in gates: gate = None gates = None parametric_gates = None
def cost_phf_sample_oneshot(print_level, qulacs_hamiltonianZ, qulacs_s2Z, qulacs_ancZ, coef0_H, coef0_S2, kappa_list): """Function: Test function for sampling Hamiltonian and S** expectation values with PHF just for once. Author(s): Takashi Tsuchimochi 使われてない? """ t1 = time.time() noa = Quket.noa nob = Quket.nob nva = Quket.nva nvb = Quket.nvb n_electrons = Quket.n_electrons n_qubit_system = n_qubits n_qubits = Quket.n_qubits + 1 anc = n_qubit_system state = QuantumState(n_qubits) circuit_rhf = set_circuit_rhfZ(n_qubits, n_electrons) circuit_rhf.update_quantum_state(state) circuit_uhf = set_circuit_uhfZ(n_qubits, noa, nob, nva, nvb, kappa_list) circuit_uhf.update_quantum_state(state) ### Set post-measurement states #### poststate0 = state.copy() poststate1 = state.copy() circuit0 = QuantumCircuit(n_qubits) circuit1 = QuantumCircuit(n_qubits) ### Projection to anc = 0 or anc = 1 ### circuit0.add_gate(P0(0)) circuit1.add_gate(P1(0)) circuit0.update_quantum_state(poststate0) circuit1.update_quantum_state(poststate1) ### Renormalize each state ### norm0 = poststate0.get_squared_norm() norm1 = poststate1.get_squared_norm() poststate0.normalize(norm0) poststate1.normalize(norm1) ### grid loop ### Ng = 4 beta = [-0.861136311594053, -0.339981043584856, 0.339981043584856, 0.861136311594053] wg = [0.173927422568724, 0.326072577431273, 0.326072577431273, 0.173927422568724] ### a list to compute the probability to observe 0 in ancilla qubit p0_list = np.full(n_qubits, 2) p0_list[-1] = 0 ### Array for <HUg>, <S2Ug>, <Ug> samplelist = [5, 50, 500, 5000, 50000, 500000, 5000000] Ng = 4 ncyc = 10 prints("", filepath="./log.txt", opentype="w") for i_sample in samplelist: sampleEn = [] sampleS2 = [] for icyc in range(ncyc): prints(f"n_sample : {i_sample} ({icyc} / {ncyc})", filepath="./log.txt") HUg = [] S2Ug = [] Ug = [] Ephf = S2 = Norm = 0 for i in range(Ng): ### Copy quantum state of UHF (cannot be done in real device) ### state_g = QuantumState(n_qubits) circuit_rhf.update_quantum_state(state_g) circuit_uhf.update_quantum_state(state_g) ### Construct Ug test circuit_ug = QuantumCircuit(n_qubits) ### Hadamard on anc circuit_ug.add_H_gate(anc) controlled_Ug(circuit_ug, n_qubits, anc, np.arccos(beta[i])) circuit_ug.add_H_gate(anc) circuit_ug.update_quantum_state(state_g) ### Probabilities for getting 0 and 1 in ancilla qubit ### p0 = state_g.get_marginal_probability(p0_list) p1 = 1 - p0 ### Compute expectation value <HUg> ### HUg.append(sample_observable(state_g, qulacs_hamiltonianZ, i_sample).real) ### <S2Ug> ### S2Ug.append(sample_observable(state_g, qulacs_s2Z, i_sample).real) #S2Ug.append(qulacs_s2Z.get_expectation_value(state_g)) #Ug.append(p0 - p1) Ug.append(sample_observable(state_g, qulacs_ancZ, i_sample).real) ### Norm accumulation ### Norm += wg[i]*g[i] sampleHUg[icyc, i] = HUg[i] sampleS2Ug[icyc, i] = S2Ug[i] sampleUg[icyc, i] = Ug[i] #print(f"{p0=} {p1=} {p0-p1=}") sampleHUg1.append(HUg[0]) sampleHUg2.append(HUg[1]) sampleHUg3.append(HUg[2]) sampleHUg4.append(HUg[3]) sampleS2Ug1.append(S2Ug[0]) sampleS2Ug2.append(S2Ug[1]) sampleS2Ug3.append(S2Ug[2]) SAMpleS2Ug4.append(S2Ug[3]) sampleUg1.append(Ug[0]) sampleUg2.append(Ug[1]) sampleUg3.append(Ug[2]) sampleUg4.append(Ug[3]) ### Energy calculation <HP>/<P> and <S**2P>/<P> ### Ephf = 0 for i in range(Ng): Ephf += wg[i]*HUg[i]/Norm S2 += wg[i]*S2Ug[i]/Norm #print(f" E[PHF] = {Ephf} <S**2> = {S2} (Nsample = {i_sample})") Ephf += coef0_H S2 += coef0_S2 sampleEn[icyc, 0] = Ephf sampleS2[icyc, 0] = S2 #print(f"(n_sample = {i_sample}): sample HUg1\n", sampleHUg1) #print(f"(n_sample = {i_sample}): sample HUg2\n", sampleHUg2) #print(f"(n_sample = {i_sample}): sample HUg3\n", sampleHUg3) #print(f"(n_sample = {i_sample}): sample HUg4\n", sampleHUg4) #print(f"(n_sample = {i_sample}): sample S2Ug1\n", sampleS2Ug1) #print(f"(n_sample = {i_sample}): sample S2Ug2\n", sampleS2Ug2) #print(f"(n_sample = {i_sample}): sample S2Ug3\n", sampleS2Ug3) #print(f"(n_sample = {i_sample}): sample S2Ug4\n", sampleS2Ug4) #print(f"(n_sample = {i_sample}): sample Ug1\n", sampleUg1) #print(f"(n_sample = {i_sample}): sample Ug2\n", sampleUg2) #print(f"(n_sample = {i_sample}): sample Ug3\n", sampleUg3) #print(f"(n_sample = {i_sample}): sample Ug4\n", sampleUg4) #print(f"(n_sample = {i_sample}): sample HUg1\n", sampleHUg1) #print(f"(n_sample = {i_sample}): sample HUg2\n", sampleHUg2) #print(f"(n_sample = {i_sample}): sample HUg3\n", sampleHUg3) #print(f"(n_sample = {i_sample}): sample HUg4\n", sampleHUg4) #print(f"(n_sample = {i_sample}): sample En\n", sampleEn) #print(f"(n_sample = {i_sample}): sample S2\n", sampleS2) with open(f"./HUg_{i_sample}.csv", "w") as fHUg: writer = csv.writer(fHUg) writer.writerows(sampleHUg) with open(f"./S2Ug_{i_sample}.csv", "w") as fS2Ug: writer = csv.writer(fS2Ug) writer.writerows(sampleS2Ug) with open(f"./Ug_{i_sample}.csv", "w") as fUg: writer = csv.writer(fUg) writer.writerows(sampleUg) with open(f"./En_{i_sample}.csv", "w") as fEn: writer = csv.writer(fEn) writer.writerows(sampleEn) with open(f"./S2_{i_sample}.csv", "w") as fS2: writer = csv.writer(fS2) writer.writerows(sampleS2) return Ephf, S2
def cost_phf_sample(Quket, print_level, qulacs_hamiltonian, qulacs_hamiltonianZ, qulacs_s2Z, qulacs_ancZ, coef0_H, coef0_S2, ref, theta_list, samplelist): """Function: Sample Hamiltonian and S**2 expectation values with PHF and PUCCSD. Write out the statistics in csv files. Author(s): Takashi Tsuchimochi """ t1 = time.time() noa = Quket.noa nob = Quket.nob nva = Quket.nva nvb = Quket.nvb n_electrons = Quket.n_electrons n_qubit_system = n_qubits n_qubits = Quket.n_qubits + 1 anc = n_qubit_system ndim1 = Quket.ndim1 state = QuantumState(n_qubits) circuit_rhf = set_circuit_rhfZ(n_qubits, n_electrons) circuit_rhf.update_quantum_state(state) if ref == "phf": circuit_uhf = set_circuit_uhfZ(n_qubits, noa, nob, nva, nvb, theta_list) circuit_uhf.update_quantum_state(state) print("pHF") elif ref == "puccsd": circuit = set_circuit_uccsd(n_qubits, noa, nob, nva, nvb, theta_list, ndim1) for i in range(rho): circuit.update_quantum_state(state) print("UCCSD") if print_level > -1: print("State before projection") utils.print_state(state, n_qubit_system) #### Set post-measurement states #### #poststate0 = state.copy() #poststate1 = state.copy() #circuit0 = QuantumCircuit(n_qubits) #circuit1 = QuantumCircuit(n_qubits) #### Projection to anc = 0 or anc = 1 ### #circuit0.add_gate(P0(0)) #circuit1.add_gate(P1(0)) #circuit0.update_quantum_state(poststate0) #circuit1.update_quantum_state(poststate1) #### Renormalize each state ### #norm0 = poststate0.get_squared_norm() #norm1 = poststate1.get_squared_norm() #poststate0.normalize(norm0) #poststate1.normalize(norm1) ### grid loop ### Ng = 4 beta = [-0.861136311594053, -0.339981043584856, 0.339981043584856, 0.861136311594053] wg = [0.173927422568724, 0.326072577431273, 0.326072577431273, 0.173927422568724] Ng = 2 beta = [0.577350269189626, -0.577350269189626] wg = [0.5, 0.5] ### a list to compute the probability to observe 0 in ancilla qubit p0_list = np.full(n_qubits, 2) p0_list[-1] = 0 ### Array for <HUg>, <S2Ug>, <Ug> # samplelist = [10,100,1000,10000,100000,1000000,10000000] ncyc = 4 prints("", filepath="./log2.txt") for i_sample in samplelist: i_sample_x = i_sample if i_sample == 10000000: print("OK") ncyc = ncyc*10 i_sample_x = 1000000 sampleHUg1 = [] sampleHUg2 = [] sampleHUg3 = [] sampleHUg4 = [] sampleS2Ug1 = [] sampleS2Ug2 = [] sampleS2Ug3 = [] sampleS2Ug4 = [] sampleUg1 = [] sampleUg2 = [] sampleUg3 = [] sampleUg4 = [] # sampleEn = [] # sampleS2 = [] sampleHUg = np.zeros((ncyc, Ng)) sampleS2Ug = np.zeros((ncyc, Ng)) sampleUg = np.zeros((ncyc, Ng)) sampleEn = np.zeros((ncyc, 1)) sampleS2 = np.zeros((ncyc, 1)) for icyc in range(ncyc): prints(f"n_sample = {i_sample_x} ({icyc} / {ncyc})", filepath="./log2.txt") HUg = [] S2Ug = [] Ug = [] Ephf = S2 = Norm = 0 for i in range(Ng): ### Copy quantum state of UHF (cannot be done in real device) ### state_g = QuantumState(n_qubits) state_g.load(state) ### Construct Ug test circuit_ug = QuantumCircuit(n_qubits) ### Hadamard on anc circuit_ug.add_H_gate(anc) controlled_Ug(circuit_ug, n_qubits, anc, np.arccos(beta[i])) circuit_ug.add_H_gate(anc) circuit_ug.update_quantum_state(state_g) ### Set post-measurement states #### poststate0 = state_g.copy() poststate1 = state_g.copy() circuit0 = QuantumCircuit(n_qubits) circuit1 = QuantumCircuit(n_qubits) ### Projection to anc = 0 or anc = 1 ### circuit0.add_gate(P0(anc)) circuit1.add_gate(P1(anc)) circuit0.update_quantum_state(poststate0) circuit1.update_quantum_state(poststate1) ### Renormalize each state ### norm0 = poststate0.get_squared_norm() norm1 = poststate1.get_squared_norm() poststate0.normalize(norm0) poststate1.normalize(norm1) ### Set ancilla qubit of poststate1 to zero (so that it won't be used) ### circuit_anc = QuantumCircuit(n_qubits) circuit_anc.add_X_gate(anc) circuit_anc.update_quantum_state(poststate1) print( test_transition_observable( state_g, qulacs_hamiltonianZ, poststate0, poststate1, 100000)) # exit() ### Probabilities for getting 0 and 1 in ancilla qubit ### p0 = state_g.get_marginal_probability(p0_list) p1 = 1 - p0 ### Compute expectation value <HUg> ### HUg.append(sample_observable(state_g, qulacs_hamiltonianZ, i_sample_x).real) #HUg.append(adaptive_sample_observable(state_g, # qulacs_hamiltonianZ, # i_sample_x).real) ### <S2Ug> ### S2Ug.append(sample_observable(state_g, qulacs_s2Z, i_sample_x).real) #S2Ug.append(adaptive_sample_observable(state_g, # qulacs_s2Z, # i_sample_x).real) #S2Ug.append(qulacs_s2Z.get_expectation_value(state_g)) #HUg.append(0) #S2Ug.append(0) #Ug.append(p0 - p1) n_term = qulacs_hamiltonianZ.get_term_count() n_sample_total = i_sample_x * n_term # in the worst-case scenario, # Ug is measured as many times as n_sample_total #(required to evaluate HUg) Ug.append(sample_observable(state_g, qulacs_ancZ, i_sample_x*n_term).real) #p0_sample = 0 #for j_sample in range(n_sample_total): # if(p0 > np.random.rand()): # p0_sample += 1 #Ug.append(2*p0_sample/n_sample_total - 1) ### Norm accumulation ### Norm += wg[i]*Ug[i] sampleHUg[icyc, i] = HUg[i] sampleS2Ug[icyc, i] = S2Ug[i] sampleUg[icyc, i] = Ug[i] #print('p0 : ',p0,' p1 : ',p1, ' p0 - p1 : ',p0-p1) sampleHUg1.append(HUg[0]) sampleHUg2.append(HUg[1]) #sampleHUg3.append(HUg[2]) #sampleHUg4.append(HUg[3]) sampleS2Ug1.append(S2Ug[0]) sampleS2Ug2.append(S2Ug[1]) #sampleS2Ug3.append(S2Ug[2]) #sampleS2Ug4.append(S2Ug[3]) sampleUg1.append(Ug[0]) sampleUg2.append(Ug[1]) #sampleUg3.append(Ug[2]) #sampleUg4.append(Ug[3]) ### Energy calculation <HP>/<P> and <S**2P>/<P> ### Ephf = 0 for i in range(Ng): Ephf += wg[i]*HUg[i]/Norm S2 += wg[i]*S2Ug[i]/Norm # print(" <S**2> = ", S2, '\n') Ephf += coef0_H S2 += coef0_S2 sampleEn[icyc, 0] = Ephf sampleS2[icyc, 0] = S2 # print(" <E[PHF]> (Nsample = ",i_sample,") = ", Ephf) #print(f"(n_sample = {i_sample}): sample HUg1\n",sampleHUg1) #print(f"(n_sample = {i_sample}): sample HUg2\n",sampleHUg2) #print(f"(n_sample = {i_sample}): sample HUg3\n",sampleHUg3) #print(f"(n_sample = {i_sample}): sample HUg4\n",sampleHUg4) #print(f"(n_sample = {i_sample}): sample S2Ug1\n",sampleS2Ug1) #print(f"(n_sample = {i_sample}): sample S2Ug2\n",sampleS2Ug2) #print(f"(n_sample = {i_sample}): sample S2Ug3\n",sampleS2Ug3) #print(f"(n_sample = {i_sample}): sample S2Ug4\n",sampleS2Ug4) #print(f"(n_sample = {i_sample}): sample Ug1\n",sampleUg1) #print(f"(n_sample = {i_sample}): sample Ug2\n",sampleUg2) #print(f"(n_sample = {i_sample}): sample Ug3\n",sampleUg3) #print(f"(n_sample = {i_sample}): sample Ug4\n",sampleUg4) #print(f"(n_sample = {i_sample}): sample HUg1\n",sampleHUg1) #print(f"(n_sample = {i_sample}): sample HUg2\n",sampleHUg2) #print(f"(n_sample = {i_sample}): sample HUg3\n",sampleHUg3) #print(f"(n_sample = {i_sample}): sample HUg4\n",sampleHUg4) #print(f"(n_sample = {i_sample}): sample En\n",sampleEn) #print(f"(n_sample = {i_sample}): sample S2\n",sampleS2) with open(f"./Ug_{i_sample}.csv", "w") as fUg: writer = csv.writer(fUg) writer.writerows(sampleUg) with open(f"./HUg_{i_sample}.csv", "w") as fHUg: writer = csv.writer(fHUg) writer.writerows(sampleHUg) with open(f"./S2Ug_{i_sample}.csv", "w") as fS2Ug: writer = csv.writer(fS2Ug) writer.writerows(sampleS2Ug) with open(f"./En_{i_sample}.csv", "w") as fEn: writer = csv.writer(fEn) writer.writerows(sampleEn) with open(f"./S2_{i_smaple}.csv", "w") as fS2: writer = csv.writer(fS2) writer.writerows(sampleS2) return Ephf, S2