Ejemplo n.º 1
0
def test_zcsr_isherm():
    "spmath: zcsr_isherm"
    N = 100
    for kk in range(100):
        A = rand_herm(N, 0.1)
        B = rand_herm(N, 0.05) + 1j * rand_herm(N, 0.05)
        assert_(zcsr_isherm(A.data))
        assert_(zcsr_isherm(B.data) == 0)
Ejemplo n.º 2
0
def test_zcsr_isherm():
    "spmath: zcsr_isherm"
    N = 100
    for kk in range(100):
        A = rand_herm(N, 0.1)
        B = rand_herm(N, 0.05) + 1j*rand_herm(N, 0.05)
        assert_(zcsr_isherm(A.data))
        assert_(zcsr_isherm(B.data)==0)
Ejemplo n.º 3
0
def test_zcsr_isherm_compare_implicit_zero():
    """
    Regression test for gh-1350, comparing explicitly stored values in the
    matrix (but below the tolerance for allowable Hermicity) to implicit zeros.
    """
    tol = 1e-12
    n = 10

    base = sp.csr_matrix(np.array([[1, tol * 1e-3j], [0, 1]]))
    base = fast_csr_matrix((base.data, base.indices, base.indptr), base.shape)
    # If this first line fails, the zero has been stored explicitly and so the
    # test is invalid.
    assert base.data.size == 3
    assert zcsr_isherm(base, tol=tol)
    assert zcsr_isherm(base.T, tol=tol)

    # A similar test if the structures are different, but it's not
    # Hermitian.
    base = sp.csr_matrix(np.array([[1, 1j], [0, 1]]))
    base = fast_csr_matrix((base.data, base.indices, base.indptr), base.shape)
    assert base.data.size == 3
    assert not zcsr_isherm(base, tol=tol)
    assert not zcsr_isherm(base.T, tol=tol)

    # Catch possible edge case where it shouldn't be Hermitian, but faulty loop
    # logic doesn't fully compare all rows.
    base = sp.csr_matrix(
        np.array([
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 0, 0],
        ],
                 dtype=np.complex128))
    base = fast_csr_matrix((base.data, base.indices, base.indptr), base.shape)
    assert base.data.size == 1
    assert not zcsr_isherm(base, tol=tol)
    assert not zcsr_isherm(base.T, tol=tol)

    # Pure diagonal matrix.
    base = fast_identity(n)
    base.data *= np.random.rand(n)
    assert zcsr_isherm(base, tol=tol)
    assert not zcsr_isherm(base * 1j, tol=tol)

    # Larger matrices where all off-diagonal elements are below the absolute
    # tolerance, so everything should always appear Hermitian, but with random
    # patterns of non-zero elements.  It doesn't matter that it isn't Hermitian
    # if scaled up; everything is below absolute tolerance, so it should appear
    # so.  We also set the diagonal to be larger to the tolerance to ensure
    # isherm can't just compare everything to zero.
    for density in np.linspace(0.2, 1, 21):
        base = tol * 1e-2 * (np.random.rand(n, n) + 1j * np.random.rand(n, n))
        # Mask some values out to zero.
        base[np.random.rand(n, n) > density] = 0
        np.fill_diagonal(base, tol * 1000)
        nnz = np.count_nonzero(base)
        base = sp.csr_matrix(base)
        base = fast_csr_matrix((base.data, base.indices, base.indptr), (n, n))
        assert base.data.size == nnz
        assert zcsr_isherm(base, tol=tol)
        assert zcsr_isherm(base.T, tol=tol)

        # Similar test when it must be non-Hermitian.  We set the diagonal to
        # be real because we want to test off-diagonal implicit zeros, and
        # having an imaginary first element would automatically fail.
        nnz = 0
        while nnz <= n:
            # Ensure that we don't just have the real diagonal.
            base = tol * 1000j * np.random.rand(n, n)
            # Mask some values out to zero.
            base[np.random.rand(n, n) > density] = 0
            np.fill_diagonal(base, tol * 1000)
            nnz = np.count_nonzero(base)
        base = sp.csr_matrix(base)
        base = fast_csr_matrix((base.data, base.indices, base.indptr), (n, n))
        assert base.data.size == nnz
        assert not zcsr_isherm(base, tol=tol)
        assert not zcsr_isherm(base.T, tol=tol)