Ejemplo n.º 1
0
    def test_gate_product(self):

        filename = "qft.qasm"
        filepath = Path(__file__).parent / 'qasm_files' / filename
        qc = read_qasm(filepath)

        U_list_expanded = qc.propagators()
        U_list = qc.propagators(expand=False)

        inds_list = []

        for gate in qc.gates:
            if isinstance(gate, Measurement):
                continue
            else:
                inds_list.append(gate.get_inds(qc.N))

        U_1, _ = gate_sequence_product(U_list,
                                       inds_list=inds_list,
                                       expand=True)
        U_2 = gate_sequence_product(U_list_expanded,
                                    left_to_right=True,
                                    expand=False)

        np.testing.assert_allclose(U_1, U_2)
Ejemplo n.º 2
0
def test_scheduling_pulse(
        instructions, method, expected_length, random_shuffle, gates_schedule):
    circuit = QubitCircuit(4)
    for instruction in instructions:
        circuit.add_gate(
            Gate(instruction.name,
            instruction.targets,
            instruction.controls))

    if random_shuffle:
        repeat_num = 5
    else:
        repeat_num = 0
    result0 = gate_sequence_product(circuit.propagators())

    # run the scheduler
    scheduler = Scheduler(method)
    gate_cycle_indices = scheduler.schedule(
        instructions, gates_schedule=gates_schedule, repeat_num=repeat_num)

    # check if the scheduled length is expected
    assert(max(gate_cycle_indices) == expected_length)
    scheduled_gate = [[] for i in range(max(gate_cycle_indices)+1)]

    # check if the scheduled circuit is correct
    for i, cycles in enumerate(gate_cycle_indices):
        scheduled_gate[cycles].append(circuit.gates[i])
    circuit.gates = sum(scheduled_gate, [])
    result1 = gate_sequence_product(circuit.propagators())
    assert(tracedist(result0*result1.dag(), qeye(result0.dims[0])) < 1.0e-7)
Ejemplo n.º 3
0
 def testresolve(self, gate_from, gate_to, targets, controls):
     qc1 = QubitCircuit(2)
     qc1.add_gate(gate_from, targets=targets, controls=controls)
     U1 = gates.gate_sequence_product(qc1.propagators())
     qc2 = qc1.resolve_gates(basis=gate_to)
     U2 = gates.gate_sequence_product(qc2.propagators())
     assert _op_dist(U1, U2) < 1e-12
Ejemplo n.º 4
0
def test_device_against_gate_sequence(num_qubits, gates, device_class, kwargs):
    circuit = qutip.qip.circuit.QubitCircuit(num_qubits)
    for gate in gates:
        circuit.add_gate(gate)
    U_ideal = gate_sequence_product(circuit.propagators())

    device = device_class(num_qubits, correct_global_phase=True)
    U_physical = gate_sequence_product(device.run(circuit))
    assert (U_ideal - U_physical).norm() < _tol
Ejemplo n.º 5
0
def test_device_against_gate_sequence(gates):
    n_qubits = 3
    circuit = qutip.qip.circuit.QubitCircuit(n_qubits)
    for gate in gates:
        circuit.add_gate(gate)
    U_ideal = gate_sequence_product(circuit.propagators())

    device = DispersiveCavityQED(n_qubits, correct_global_phase=True)
    U_physical = gate_sequence_product(device.run(circuit))
    assert (U_ideal - U_physical).norm() < _tol
Ejemplo n.º 6
0
 def testFREDKINdecompose(self):
     """
     FREDKIN to rotation and CNOT: compare unitary matrix for FREDKIN and product of
     resolved matrices in terms of rotation gates and CNOT.
     """
     qc1 = QubitCircuit(3)
     qc1.add_gate("FREDKIN", targets=[0, 1], controls=[2])
     U1 = gates.gate_sequence_product(qc1.propagators())
     qc2 = qc1.resolve_gates()
     U2 = gates.gate_sequence_product(qc2.propagators())
     assert _op_dist(U1, U2) < 1e-12
Ejemplo n.º 7
0
def test_analytical_evolution(num_qubits, gates, device_class, kwargs):
    circuit = qutip.qip.circuit.QubitCircuit(num_qubits)
    for gate in gates:
        circuit.add_gate(gate)
    state = qutip.rand_ket(2**num_qubits)
    state.dims = [[2] * num_qubits, [1] * num_qubits]
    ideal = gate_sequence_product([state] + circuit.propagators())
    device = device_class(num_qubits, correct_global_phase=True)
    operators = device.run_state(init_state=state, qc=circuit, analytical=True)
    result = gate_sequence_product(operators)
    assert abs(qutip.metrics.fidelity(result, ideal) - 1) < _tol
Ejemplo n.º 8
0
 def testSNOTdecompose(self):
     """
     SNOT to rotation: compare unitary matrix for SNOT and product of
     resolved matrices in terms of rotation gates.
     """
     qc1 = QubitCircuit(1)
     qc1.add_gate("SNOT", targets=0)
     U1 = gates.gate_sequence_product(qc1.propagators())
     qc2 = qc1.resolve_gates()
     U2 = gates.gate_sequence_product(qc2.propagators())
     assert _op_dist(U1, U2) < 1e-12
Ejemplo n.º 9
0
 def testISWAPtoCNOT(self):
     """
     ISWAP to CNOT: compare unitary matrix for ISWAP and product of
     resolved matrices in terms of CNOT.
     """
     qc1 = QubitCircuit(2)
     qc1.add_gate("ISWAP", targets=[0, 1])
     U1 = gate_sequence_product(qc1.propagators())
     qc2 = qc1.resolve_gates(basis="CNOT")
     U2 = gate_sequence_product(qc2.propagators())
     assert_((U1 - U2).norm() < 1e-12)
Ejemplo n.º 10
0
 def testCNOTtoCSIGN(self):
     """
     CNOT to CSIGN: compare unitary matrix for CNOT and product of
     resolved matrices in terms of CSIGN.
     """
     qc1 = QubitCircuit(2)
     qc1.add_gate("CNOT", targets=[0], controls=[1])
     U1 = gate_sequence_product(qc1.propagators())
     qc2 = qc1.resolve_gates(basis="CSIGN")
     U2 = gate_sequence_product(qc2.propagators())
     assert_((U1 - U2).norm() < 1e-12)
Ejemplo n.º 11
0
def test_analytical_evolution():
    n_qubits = 3
    circuit = qutip.qip.circuit.QubitCircuit(n_qubits)
    for gate in [_iswap, _rz, _rx]:
        circuit.add_gate(gate)
    state = qutip.rand_ket(2**n_qubits)
    state.dims = [[2] * n_qubits, [1] * n_qubits]
    ideal = gate_sequence_product([state] + circuit.propagators())
    device = DispersiveCavityQED(n_qubits, correct_global_phase=True)
    operators = device.run_state(init_state=state, qc=circuit, analytical=True)
    result = gate_sequence_product(operators)
    assert abs(qutip.metrics.fidelity(result, ideal) - 1) < _tol
Ejemplo n.º 12
0
 def testadjacentgates(self):
     """
     Adjacent Gates: compare unitary matrix for ISWAP and product of
     resolved matrices in terms of adjacent gates interaction.
     """
     qc1 = QubitCircuit(3)
     qc1.add_gate("ISWAP", targets=[0, 2])
     U1 = gates.gate_sequence_product(qc1.propagators())
     qc0 = qc1.adjacent_gates()
     qc2 = qc0.resolve_gates(basis="ISWAP")
     U2 = gates.gate_sequence_product(qc2.propagators())
     assert _op_dist(U1, U2) < 1e-12
Ejemplo n.º 13
0
def test_numerical_evolution(num_qubits, gates, device_class, kwargs):
    num_qubits = 3
    circuit = qutip.qip.circuit.QubitCircuit(num_qubits)
    for gate in gates:
        circuit.add_gate(gate)
    with warnings.catch_warnings(record=True):
        device = device_class(num_qubits, **kwargs)
    device.load_circuit(circuit)

    state = qutip.rand_ket(2**num_qubits)
    state.dims = [[2] * num_qubits, [1] * num_qubits]
    target = gate_sequence_product([state] + circuit.propagators())
    if len(device.dims) > num_qubits:
        num_ancilla = len(device.dims) - num_qubits
        ancilla_indices = slice(0, num_ancilla)
        extra = qutip.basis(device.dims[ancilla_indices], [0] * num_ancilla)
        init_state = qutip.tensor(extra, state)
    else:
        init_state = state
    options = qutip.Options(store_final_state=True, nsteps=50_000)
    result = device.run_state(init_state=init_state,
                              analytical=False,
                              options=options)
    if len(device.dims) > num_qubits:
        target = qutip.tensor(extra, target)
    assert _tol > abs(1 - qutip.metrics.fidelity(result.final_state, target))
Ejemplo n.º 14
0
    def test_linear_SQRTISWAP(self):
        """
        Linear Spin Chain Setup: compare unitary matrix for SQRTISWAP and
        propogator matrix of the implemented physical model.
        """
        N = 3

        qc = QubitCircuit(N)
        qc.add_gate("SQRTISWAP", targets=[0, 1])
        U_ideal = gate_sequence_product(qc.propagators())

        p = LinearSpinChain(N, correct_global_phase=True)
        U_list = p.run(qc)
        U_physical = gate_sequence_product(U_list)

        assert_((U_ideal - U_physical).norm() < 1e-12)
Ejemplo n.º 15
0
 def testQFTComparison(self):
     """
     qft: compare qft and product of qft steps
     """
     for N in range(1, 5):
         U1 = qft(N)
         U2 = gate_sequence_product(qft_steps(N))
         assert_((U1 - U2).norm() < 1e-12)
Ejemplo n.º 16
0
    def test_numerical_evo(self):
        """
        Test run_state with qutip solver
        """
        N = 3
        qc = QubitCircuit(N)
        qc.add_gate("RX", targets=[0], arg_value=np.pi / 2)
        qc.add_gate("CNOT", targets=[0], controls=[1])
        qc.add_gate("ISWAP", targets=[2, 1])
        qc.add_gate("CNOT", targets=[0], controls=[2])
        qc.add_gate("SQRTISWAP", targets=[0, 2])
        qc.add_gate("RZ", arg_value=np.pi / 2, targets=[1])

        # CircularSpinChain
        test = CircularSpinChain(N)
        tlist, coeffs = test.load_circuit(qc)

        init_state = rand_ket(2**N)
        init_state.dims = [[2] * N, [1] * N]
        rho1 = gate_sequence_product([init_state] + qc.propagators())
        result = test.run_state(
            init_state=init_state,
            analytical=False,
            options=Options(store_final_state=True)).final_state
        assert_allclose(
            fidelity(result, rho1),
            1.,
            rtol=1e-6,
            err_msg="Numerical run_state fails in CircularSpinChain")

        # LinearSpinChain
        test = LinearSpinChain(N)
        tlist, coeffs = test.load_circuit(qc)

        init_state = rand_ket(2**N)
        init_state.dims = [[2] * N, [1] * N]
        rho1 = gate_sequence_product([init_state] + qc.propagators())
        result = test.run_state(
            init_state=init_state,
            analytical=False,
            options=Options(store_final_state=True)).final_state
        assert_allclose(fidelity(result, rho1),
                        1.,
                        rtol=1e-6,
                        err_msg="Numerical run_state fails in LinearSpinChain")
Ejemplo n.º 17
0
    def test_linear_combination(self):
        """
        Linear Spin Chain Setup: compare unitary matrix for ISWAP, SQRTISWAP,
        RX and RY gates and the propogator matrix of the implemented physical
        model.
        """
        N = 3

        qc = QubitCircuit(N)
        qc.add_gate("ISWAP", targets=[0, 1])
        qc.add_gate("SQRTISWAP", targets=[0, 1])
        qc.add_gate("RZ", arg_value=np.pi / 2, arg_label=r"\pi/2", targets=[1])
        qc.add_gate("RX", arg_value=np.pi / 2, arg_label=r"\pi/2", targets=[0])
        U_ideal = gate_sequence_product(qc.propagators())

        p = LinearSpinChain(N, correct_global_phase=True)
        U_list = p.run(qc)
        U_physical = gate_sequence_product(U_list)

        assert_((U_ideal - U_physical).norm() < 1e-12)
Ejemplo n.º 18
0
def hst_measurement(state: Qobj, qcircuit, sample_size=1):
    """Hilbert-Schmidt test"""
    N = len(state.dims[0])
    qc = QubitCircuit(N * 2)
    qc.add_circuit(qcircuit)

    if state.isket:
        statein = tensor(state, qubit_states(N))
    elif state.isbra:
        statein = tensor(state, qubit_states(N).dag())
    elif state.isoper:
        statein = tensor(state, ket2dm(qubit_states(N)))
    state_preps = statein.transform(
        gate_sequence_product(bell_prep(N, True).propagators()))
    state_out = state_preps.transform(gate_sequence_product(qc.propagators()))
    state_postps = state_out.transform(
        gate_sequence_product(bell_prep(N).propagators()))

    prob = com_measure(state_postps)
    hst = np.random.choice(4**N, sample_size, p=prob)
    mresult = [
        state_index_number(state_postps.dims[0], result) for result in hst
    ]
    return mresult  # raw output
Ejemplo n.º 19
0
def dst_measurement(state1, state2, sample_size=1):
    """destructive swap test"""
    N = len(state1.dims[0])
    if len(state2.dims[0]) != N:
        raise ValueError("Dimensions of states dismatch.")

    statein = tensor(state1, state2)
    stateout = statein.transform(
        gate_sequence_product(bell_prep(N, True).propagators()))

    prob = com_measure(stateout)
    result_in_number = np.random.choice(4**N, sample_size, p=prob)
    mresult = [
        state_index_number(stateout.dims[0], result)
        for result in result_in_number
    ]
    return mresult  # raw output
Ejemplo n.º 20
0
def test_numerical_evolution():
    n_qubits = 3
    circuit = qutip.qip.circuit.QubitCircuit(n_qubits)
    circuit.add_gate("RX", targets=[0], arg_value=np.pi / 2)
    circuit.add_gate("CNOT", targets=[0], controls=[1])
    circuit.add_gate("ISWAP", targets=[2, 1])
    circuit.add_gate("CNOT", targets=[0], controls=[2])
    with warnings.catch_warnings(record=True):
        device = DispersiveCavityQED(n_qubits, g=0.1)
    device.load_circuit(circuit)

    state = qutip.rand_ket(2**n_qubits)
    state.dims = [[2] * n_qubits, [1] * n_qubits]
    target = gate_sequence_product([state] + circuit.propagators())
    extra = qutip.basis(10, 0)
    options = qutip.Options(store_final_state=True, nsteps=50_000)
    result = device.run_state(init_state=qutip.tensor(extra, state),
                              analytical=False,
                              options=options)
    assert _tol > abs(1 - qutip.metrics.fidelity(result.final_state,
                                                 qutip.tensor(extra, target)))
Ejemplo n.º 21
0
def test_numerical_circuit(circuit, device_class, kwargs, schedule_mode):
    num_qubits = circuit.N
    device = device_class(circuit.N, **kwargs)
    device.load_circuit(circuit, schedule_mode=schedule_mode)

    state = qutip.rand_ket(2**num_qubits)
    state.dims = [[2] * num_qubits, [1] * num_qubits]
    target = gate_sequence_product([state] + circuit.propagators())
    if len(device.dims) > num_qubits:
        num_ancilla = len(device.dims) - num_qubits
        ancilla_indices = slice(0, num_ancilla)
        extra = qutip.basis(device.dims[ancilla_indices], [0] * num_ancilla)
        init_state = qutip.tensor(extra, state)
    else:
        init_state = state
    options = qutip.Options(store_final_state=True, nsteps=50_000)
    result = device.run_state(init_state=init_state,
                              analytical=False,
                              options=options)
    if len(device.dims) > num_qubits:
        target = qutip.tensor(extra, target)
    assert _tol > abs(1 - qutip.metrics.fidelity(result.final_state, target))
Ejemplo n.º 22
0
    def test_multi_gates(self):
        N = 2
        H_d = tensor([sigmaz()] * 2)
        H_c = []

        test = OptPulseProcessor(N)
        test.add_drift(H_d, [0, 1])
        test.add_control(sigmax(), cyclic_permutation=True)
        test.add_control(sigmay(), cyclic_permutation=True)
        test.add_control(tensor([sigmay(), sigmay()]))

        # qubits circuit with 3 gates
        setting_args = {
            "SNOT": {
                "num_tslots": 10,
                "evo_time": 1
            },
            "SWAP": {
                "num_tslots": 30,
                "evo_time": 3
            },
            "CNOT": {
                "num_tslots": 30,
                "evo_time": 3
            }
        }
        qc = QubitCircuit(N)
        qc.add_gate("SNOT", 0)
        qc.add_gate("SWAP", targets=[0, 1])
        qc.add_gate('CNOT', controls=1, targets=[0])
        test.load_circuit(qc, setting_args=setting_args, merge_gates=False)

        rho0 = rand_ket(4)  # use random generated ket state
        rho0.dims = [[2, 2], [1, 1]]
        U = gate_sequence_product(qc.propagators())
        rho1 = U * rho0
        result = test.run_state(rho0)
        assert_(fidelity(result.states[-1], rho1) > 1 - 1.0e-6)
Ejemplo n.º 23
0
def grape_unitary_adaptive(U, H0, H_ops, R, times, eps=None, u_start=None,
                           u_limits=None, interp_kind='linear',
                           use_interp=False, alpha=None, beta=None,
                           phase_sensitive=False, overlap_terminate=1.0,
                           progress_bar=BaseProgressBar()):
    """
    Calculate control pulses for the Hamiltonian operators in H_ops so that
    the unitary U is realized.

    Experimental: Work in progress.

    Parameters
    ----------
    U : Qobj
        Target unitary evolution operator.

    H0 : Qobj
        Static Hamiltonian (that cannot be tuned by the control fields).

    H_ops: list of Qobj
        A list of operators that can be tuned in the Hamiltonian via the
        control fields.

    R : int
        Number of GRAPE iterations.

    time : array / list
        Array of time coordinates for control pulse evalutation.

    u_start : array
        Optional array with initial control pulse values.

    Returns
    -------
        Instance of GRAPEResult, which contains the control pulses calculated
        with GRAPE, a time-dependent Hamiltonian that is defined by the
        control pulses, as well as the resulting propagator.
    
    """

    if eps is None:
        eps = 0.1 * (2 * np.pi) / (times[-1])

    eps_vec = np.array([eps / 2, eps, 2 * eps])
    eps_log = np.zeros(R)
    overlap_log = np.zeros(R)

    best_k = 0
    _k_overlap = np.array([0.0, 0.0, 0.0])

    M = len(times)
    J = len(H_ops)
    K = len(eps_vec)
    Uf = [None for _ in range(K)]

    u = np.zeros((R, J, M, K))

    if u_limits and len(u_limits) != 2:
        raise ValueError("u_limits must be a list with two values")

    if u_limits:
        warnings.warn("Causion: Using experimental feature u_limits")

    if u_limits and u_start:
        # make sure that no values in u0 violates the u_limits conditions
        u_start = np.array(u_start)
        u_start[u_start < u_limits[0]] = u_limits[0]
        u_start[u_start > u_limits[1]] = u_limits[1]

    if u_start is not None:
        for idx, u0 in enumerate(u_start):
            for k in range(K):
                u[0, idx, :, k] = u0

    if beta:
        warnings.warn("Causion: Using experimental feature time-penalty")

    if phase_sensitive:
        _fidelity_function = lambda x: x
    else:
        _fidelity_function = lambda x: abs(x) ** 2

    best_k = 1
    _r = 0
    _prev_overlap = 0

    progress_bar.start(R)
    for r in range(R - 1):
        progress_bar.update(r)

        _r = r
        eps_log[r] = eps_vec[best_k]

        logger.debug("eps_vec: {}".format(eps_vec))

        _t0 = time.time()

        dt = times[1] - times[0]

        if use_interp:
            ip_funcs = [interp1d(times, u[r, j, :, best_k], kind=interp_kind,
                                 bounds_error=False,
                                 fill_value=u[r, j, -1, best_k])
                        for j in range(J)]

            def _H_t(t, args=None):
                return H0 + sum([float(ip_funcs[j](t)) * H_ops[j]
                                 for j in range(J)])

            U_list = [(-1j * _H_t(times[idx]) * dt).expm()
                      for idx in range(M-1)]

        else:
            def _H_idx(idx):
                return H0 + sum([u[r, j, idx, best_k] * H_ops[j]
                                 for j in range(J)])

            U_list = [(-1j * _H_idx(idx) * dt).expm() for idx in range(M-1)]

        logger.debug("Time 1: %fs" % (time.time() - _t0))
        _t0 = time.time()

        U_f_list = []
        U_b_list = []

        U_f = 1
        U_b = 1
        for m in range(M - 1):

            U_f = U_list[m] * U_f
            U_f_list.append(U_f)

            U_b_list.insert(0, U_b)
            U_b = U_list[M - 2 - m].dag() * U_b

        logger.debug("Time 2: %fs" % (time.time() - _t0))
        _t0 = time.time()

        for j in range(J):
            for m in range(M-1):
                P = U_b_list[m] * U
                Q = 1j * dt * H_ops[j] * U_f_list[m]

                if phase_sensitive:
                    du = - cy_overlap(P.data, Q.data)
                else:
                    du = (- 2 * cy_overlap(P.data, Q.data) *
                          cy_overlap(U_f_list[m].data, P.data))

                if alpha:
                    # penalty term for high power control signals u
                    du += -2 * alpha * u[r, j, m, best_k] * dt

                if beta:
                    # penalty term for late control signals u
                    du += -2 * beta * k ** 2 * u[r, j, k] * dt

                for k, eps_val in enumerate(eps_vec):
                    u[r + 1, j, m, k] = u[r, j, m, k] + eps_val * du.real

                    if u_limits:
                        if u[r + 1, j, m, k] < u_limits[0]:
                            u[r + 1, j, m, k] = u_limits[0]
                        elif u[r + 1, j, m, k] > u_limits[1]:
                            u[r + 1, j, m, k] = u_limits[1]

            u[r + 1, j, -1, :] = u[r + 1, j, -2, :]

        logger.debug("Time 3: %fs" % (time.time() - _t0))
        _t0 = time.time()

        for k, eps_val in enumerate(eps_vec):

            def _H_idx(idx):
                return H0 + sum([u[r + 1, j, idx, k] * H_ops[j]
                                 for j in range(J)])

            U_list = [(-1j * _H_idx(idx) * dt).expm() for idx in range(M-1)]

            Uf[k] = gate_sequence_product(U_list)
            _k_overlap[k] = _fidelity_function(cy_overlap(Uf[k].data,
                                                          U.data)).real

        best_k = np.argmax(_k_overlap)
        logger.debug("k_overlap: ", _k_overlap, best_k)

        if _prev_overlap > _k_overlap[best_k]:
            logger.debug("Regression, stepping back with smaller eps.")

            u[r + 1, :, :, :] = u[r, :, :, :]
            eps_vec /= 2
        else:

            if best_k == 0:
                eps_vec /= 2

            elif best_k == 2:
                eps_vec *= 2

            _prev_overlap = _k_overlap[best_k]

        overlap_log[r] = _k_overlap[best_k]

        if overlap_terminate < 1.0:
            if _k_overlap[best_k] > overlap_terminate:
                logger.info("Reached target fidelity, terminating.")
                break

        logger.debug("Time 4: %fs" % (time.time() - _t0))
        _t0 = time.time()

    if use_interp:
        ip_funcs = [interp1d(times, u[_r, j, :, best_k], kind=interp_kind,
                             bounds_error=False, fill_value=u[R - 1, j, -1])
                    for j in range(J)]

        H_td_func = [H0] + [[H_ops[j], lambda t, args, j=j: ip_funcs[j](t)]
                            for j in range(J)]
    else:
        H_td_func = [H0] + [[H_ops[j], u[_r, j, :, best_k]] for j in range(J)]

    progress_bar.finished()

    result = GRAPEResult(u=u[:_r, :, :, best_k], U_f=Uf[best_k],
                         H_t=H_td_func)

    result.eps = eps_log
    result.overlap = overlap_log

    return result
Ejemplo n.º 24
0
    def load_circuit(self, qc, min_fid_err=np.inf, merge_gates=True,
                     setting_args=None, verbose=False, **kwargs):
        """
        Find the pulses realizing a given :class:`qutip.qip.Circuit` using
        `qutip.control.optimize_pulse_unitary`. Further parameter for
        for `qutip.control.optimize_pulse_unitary` needs to be given as
        keyword arguments. By default, it first merge all the gates
        into one unitary and then find the control pulses for it.
        It can be turned off and one can set different parameters
        for different gates. See examples for details.

        Examples
        --------
        # Same parameter for all the gates
        qc = QubitCircuit(N=1)
        qc.add_gate("SNOT", 0)

        num_tslots = 10
        evo_time = 10
        processor = OptPulseProcessor(N=1, drift=sigmaz(), ctrls=[sigmax()])
        # num_tslots and evo_time are two keyword arguments
        tlist, coeffs = processor.load_circuit(
            qc, num_tslots=num_tslots, evo_time=evo_time)

        # Different parameters for different gates
        qc = QubitCircuit(N=2)
        qc.add_gate("SNOT", 0)
        qc.add_gate("SWAP", targets=[0, 1])
        qc.add_gate('CNOT', controls=1, targets=[0])

        processor = OptPulseProcessor(N=2, drift=tensor([sigmaz()]*2))
        processor.add_control(sigmax(), cyclic_permutation=True)
        processor.add_control(sigmay(), cyclic_permutation=True)
        processor.add_control(tensor([sigmay(), sigmay()]))
        setting_args = {"SNOT": {"num_tslots": 10, "evo_time": 1},
                        "SWAP": {"num_tslots": 30, "evo_time": 3},
                        "CNOT": {"num_tslots": 30, "evo_time": 3}}
        tlist, coeffs = processor.load_circuit(qc, setting_args=setting_args,
                                               merge_gates=False)

        Parameters
        ----------
        qc: :class:`qutip.QubitCircuit` or list of Qobj
            The quantum circuit to be translated.

        min_fid_err: float, optional
            The minimal fidelity tolerance, if the fidelity error of any
            gate decomposition is higher, a warning will be given.
            Default is infinite.

        merge_gates: boolean, optimal
            If True, merge all gate/Qobj into one Qobj and then
            find the optimal pulses for this unitary matrix. If False,
            find the optimal pulses for each gate/Qobj.

        setting_args: dict, optional
            Only considered if merge_gates is False.
            It is a dictionary containing keyword arguments
            for different gates.

            E.g:
            setting_args = {"SNOT": {"num_tslots": 10, "evo_time": 1},
                            "SWAP": {"num_tslots": 30, "evo_time": 3},
                            "CNOT": {"num_tslots": 30, "evo_time": 3}}

        verbose: boolean, optional
            If true, the information for each decomposed gate
            will be shown. Default is False.

        **kwargs
            keyword arguments for `qutip.control.optimize_pulse_unitary`

        Returns
        -------
        tlist: array_like
            A NumPy array specifies the time of each coefficient

        coeffs: array_like
            A 2d NumPy array of the shape (len(ctrls), len(tlist)-1). Each
            row corresponds to the control pulse sequence for
            one Hamiltonian.

        Notes
        -----
        len(tlist)-1=coeffs.shape[1] since tlist gives the beginning and the
        end of the pulses
        """
        if setting_args is None:
            setting_args = {}
        if isinstance(qc, QubitCircuit):
            props = qc.propagators()
            gates = [g.name for g in qc.gates]
        elif isinstance(qc, Iterable):
            props = qc
            gates = None  # using list of Qobj, no gates name
        else:
            raise ValueError(
                "qc should be a "
                "QubitCircuit or a list of Qobj")
        if merge_gates:  # merge all gates/Qobj into one Qobj
            props = [gate_sequence_product(props)]
            gates = None

        time_record = []  # a list for all the gates
        coeff_record = []
        last_time = 0.  # used in concatenation of tlist
        for prop_ind, U_targ in enumerate(props):
            U_0 = identity(U_targ.dims[0])

            # If qc is a QubitCircuit and setting_args is not empty,
            # we update the kwargs for each gate.
            # keyword arguments in setting_arg have priority
            if gates is not None and setting_args:
                kwargs.update(setting_args[gates[prop_ind]])

            full_drift_ham = self.drift.get_ideal_qobjevo(self.dims).cte
            full_ctrls_hams = [pulse.get_ideal_qobj(self.dims)
                               for pulse in self.pulses]
            result = cpo.optimize_pulse_unitary(
                full_drift_ham, full_ctrls_hams, U_0, U_targ, **kwargs)

            if result.fid_err > min_fid_err:
                warnings.warn(
                    "The fidelity error of gate {} is higher "
                    "than required limit. Use verbose=True to see"
                    "the more detailed information.".format(prop_ind))

            time_record.append(result.time[1:] + last_time)
            last_time += result.time[-1]
            coeff_record.append(result.final_amps.T)

            if verbose:
                print("********** Gate {} **********".format(prop_ind))
                print("Final fidelity error {}".format(result.fid_err))
                print("Final gradient normal {}".format(
                                                result.grad_norm_final))
                print("Terminated due to {}".format(result.termination_reason))
                print("Number of iterations {}".format(result.num_iter))

        tlist = np.hstack([[0.]] + time_record)
        for i in range(len(self.pulses)):
            self.pulses[i].tlist = tlist
        coeffs = np.vstack([np.hstack(coeff_record)])
        self.coeffs = coeffs

        return tlist, coeffs