Ejemplo n.º 1
0
def smepdpsolve_generic(ssdata, options, progress_bar):
    """
    For internal use.

    .. note::

        Experimental.

    """
    if debug:
        print(inspect.stack()[0][3])

    N_store = len(ssdata.tlist)
    N_substeps = ssdata.nsubsteps
    N = N_store * N_substeps
    dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps
    NT = ssdata.ntraj

    data = Odedata()
    data.solver = "smepdpsolve"
    data.times = ssdata.tlist
    data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian_fast(ssdata.H, ssdata.c_ops)
        
    progress_bar.start(ssdata.ntraj)

    for n in range(ssdata.ntraj):
        progress_bar.update(n)
        rho_t = mat2vec(ssdata.rho0.full()).ravel()

        states_list, jump_times, jump_op_idx = \
            _smepdpsolve_single_trajectory(data, L, dt, ssdata.tlist,
                                           N_store, N_substeps,
                                           rho_t, ssdata.c_ops, ssdata.e_ops)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum(state_list).unit() for state_list in data.states]
    
    # average
    data.expect = data.expect / ssdata.ntraj

    # standard error
    if NT > 1:
        data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1))
    else:
        data.se = None

    return data
Ejemplo n.º 2
0
def smesolve_generic(H, rho0, tlist, c_ops, sc_ops, e_ops,
                     rhs, d1, d2, d2_len, ntraj, nsubsteps,
                     options, progress_bar):
    """
    internal

    .. note::

        Experimental.

    """
    if debug:
        print(inspect.stack()[0][3])

    N_store = len(tlist)
    N_substeps = nsubsteps
    N = N_store * N_substeps
    dt = (tlist[1] - tlist[0]) / N_substeps

    data = Odedata()
    data.solver = "smesolve"
    data.times = tlist
    data.expect = np.zeros((len(e_ops), N_store), dtype=complex)

    # pre-compute collapse operator combinations that are commonly needed
    # when evaluating the RHS of stochastic master equations
    A_ops = []
    for c_idx, c in enumerate(sc_ops):

        # xxx: precompute useful operator expressions...
        cdc = c.dag() * c
        Ldt = spre(c) * spost(c.dag()) - 0.5 * spre(cdc) - 0.5 * spost(cdc)
        LdW = spre(c) + spost(c.dag())
        Lm = spre(c) + spost(c.dag())  # currently same as LdW

        A_ops.append([Ldt.data, LdW.data, Lm.data])

    # Liouvillian for the deterministic part
    L = liouvillian_fast(H, c_ops)  # needs to be modified for TD systems

    progress_bar.start(ntraj)

    for n in range(ntraj):
        progress_bar.update(n)

        rho_t = mat2vec(rho0.full())

        states_list = _smesolve_single_trajectory(
            L, dt, tlist, N_store, N_substeps,
            rho_t, A_ops, e_ops, data, rhs, d1, d2, d2_len)

        # if average -> average...
        data.states.append(states_list)

    progress_bar.finished()

    # average
    data.expect = data.expect / ntraj

    return data
Ejemplo n.º 3
0
def _mesolve_const(H, rho0, tlist, c_op_list, e_ops, args, opt, progress_bar):
    """!
    Evolve the density matrix using an ODE solver, for constant hamiltonian
    and collapse operators.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        # if initial state is a ket and no collapse operator where given,
        # fall back on the unitary schrodinger equation solver
        if len(c_op_list) == 0 and isoper(H):
            return _sesolve_const(H, rho0, tlist, e_ops, args, opt)

        # Got a wave function as initial state: convert to density matrix.
        rho0 = rho0 * rho0.dag()

    #
    # construct liouvillian
    #
    if opt.tidy:
        H = H.tidyup(opt.atol)

    L = liouvillian_fast(H, c_op_list)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(L.data.data, L.data.indices, L.data.indptr)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     nsteps=opt.nsteps,
                     first_step=opt.first_step,
                     min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Ejemplo n.º 4
0
def _mesolve_const(H, rho0, tlist, c_op_list, e_ops, args, opt,
                   progress_bar):
    """!
    Evolve the density matrix using an ODE solver, for constant hamiltonian
    and collapse operators.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        # if initial state is a ket and no collapse operator where given,
        # fall back on the unitary schrodinger equation solver
        if len(c_op_list) == 0 and isoper(H):
            return _sesolve_const(H, rho0, tlist, e_ops, args, opt)

        # Got a wave function as initial state: convert to density matrix.
        rho0 = rho0 * rho0.dag()

    #
    # construct liouvillian
    #
    if opt.tidy:
        H = H.tidyup(opt.atol)

    L = liouvillian_fast(H, c_op_list)

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    r = scipy.integrate.ode(cy_ode_rhs)
    r.set_f_params(L.data.data, L.data.indices, L.data.indptr)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Ejemplo n.º 5
0
def _mesolve_func_td(L_func, rho0, tlist, c_op_list, e_ops, args, opt,
                     progress_bar):
    """!
    Evolve the density matrix using an ODE solver with time dependent
    Hamiltonian.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    new_args = None

    if len(c_op_list) > 0:
        L_data = liouvillian_fast(None, c_op_list).data
    else:
        n, m = rho0.shape
        L_data = sp.csr_matrix((n ** 2, m ** 2), dtype=complex)

    if type(args) is dict:
        new_args = {}
        for key in args:
            if isinstance(args[key], Qobj):
                if isoper(args[key]):
                    new_args[key] = (
                        -1j * (spre(args[key]) - spost(args[key]))).data
                else:
                    new_args[key] = args[key].data
            else:
                new_args[key] = args[key]

    elif type(args) is list:
        new_args = []
        for arg in args:
            if isinstance(arg, Qobj):
                if isoper(arg):
                    new_args.append((-1j * (spre(arg) - spost(arg))).data)
                else:
                    new_args.append(arg.data)
            else:
                new_args.append(arg)

    else:
        if isinstance(args, Qobj):
            if isoper(args):
                new_args = (-1j * (spre(args) - spost(args))).data
            else:
                new_args = args.data
        else:
            new_args = args

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    if not opt.rhs_with_state:
        r = scipy.integrate.ode(cy_ode_rho_func_td)
    else:
        r = scipy.integrate.ode(_ode_rho_func_td_with_state)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    r.set_f_params(L_data, L_func, new_args)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Ejemplo n.º 6
0
def _mesolve_list_td(H_func, rho0, tlist, c_op_list, e_ops, args, opt,
                     progress_bar):
    """!
    Evolve the density matrix using an ODE solver with time dependent
    Hamiltonian.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        # if initial state is a ket and no collapse operator where given,
        # fall back on the unitary schrodinger equation solver
        if len(c_op_list) == 0:
            return _sesolve_list_td(H_func, rho0, tlist, e_ops, args, opt)

        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    if len(H_func) != 2:
        raise TypeError('Time-dependent Hamiltonian list must have two terms.')
    if not isinstance(H_func[0], (list, np.ndarray)) or len(H_func[0]) <= 1:
        raise TypeError('Time-dependent Hamiltonians must be a list ' +
                        'with two or more terms')
    if (not isinstance(H_func[1], (list, np.ndarray))) or \
       (len(H_func[1]) != (len(H_func[0]) - 1)):
        raise TypeError('Time-dependent coefficients must be list with ' +
                        'length N-1 where N is the number of ' +
                        'Hamiltonian terms.')

    if opt.rhs_reuse and odeconfig.tdfunc is None:
        rhs_generate(H_func, args)

    lenh = len(H_func[0])
    if opt.tidy:
        H_func[0] = [(H_func[0][k]).tidyup() for k in range(lenh)]
    L_func = [[liouvillian_fast(H_func[0][0], c_op_list)], H_func[1]]
    for m in range(1, lenh):
        L_func[0].append(liouvillian_fast(H_func[0][m], []))

    # create data arrays for time-dependent RHS function
    Ldata = [L_func[0][k].data.data for k in range(lenh)]
    Linds = [L_func[0][k].data.indices for k in range(lenh)]
    Lptrs = [L_func[0][k].data.indptr for k in range(lenh)]
    # setup ode args string
    string = ""
    for k in range(lenh):
        string += ("Ldata[%d], Linds[%d], Lptrs[%d]," % (k, k, k))

    if args:
        td_consts = args.items()
        for elem in td_consts:
            string += str(elem[1])
            if elem != td_consts[-1]:
                string += (",")

    # run code generator
    if not opt.rhs_reuse or odeconfig.tdfunc is None:
        if opt.rhs_filename is None:
            odeconfig.tdname = "rhs" + str(odeconfig.cgen_num)
        else:
            odeconfig.tdname = opt.rhs_filename
        cgen = Codegen(h_terms=n_L_terms, h_tdterms=Lcoeff, args=args,
                       odeconfig=odeconfig)
        cgen.generate(odeconfig.tdname + ".pyx")

        code = compile('from ' + odeconfig.tdname + ' import cyq_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        odeconfig.tdfunc = cyq_td_ode_rhs

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    r = scipy.integrate.ode(odeconfig.tdfunc)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    code = compile('r.set_f_params(' + string + ')', '<string>', 'exec')
    exec(code)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Ejemplo n.º 7
0
def _mesolve_list_func_td(H_list, rho0, tlist, c_list, e_ops, args, opt,
                          progress_bar):
    """
    Internal function for solving the master equation. See mesolve for usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        rho0 = rho0 * rho0.dag()

    #
    # construct liouvillian in list-function format
    #
    L_list = []
    if opt.rhs_with_state:
        constant_func = lambda x, y, z: 1.0
    else:
        constant_func = lambda x, y: 1.0

    # add all hamitonian terms to the lagrangian list
    for h_spec in H_list:

        if isinstance(h_spec, Qobj):
            h = h_spec
            h_coeff = constant_func

        elif isinstance(h_spec, list) and isinstance(h_spec[0], Qobj):
            h = h_spec[0]
            h_coeff = h_spec[1]

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "Hamiltonian (expected callback function)")

        if isoper(h):
            L_list.append([(-1j * (spre(h) - spost(h))).data, h_coeff, False])

        elif issuper(h):
            L_list.append([h.data, h_coeff, False])

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "Hamiltonian (expected operator or superoperator)")

    # add all collapse operators to the lagrangian list
    for c_spec in c_list:

        if isinstance(c_spec, Qobj):
            c = c_spec
            c_coeff = constant_func
            c_square = False

        elif isinstance(c_spec, list) and isinstance(c_spec[0], Qobj):
            c = c_spec[0]
            c_coeff = c_spec[1]
            c_square = True

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "collapse operators (expected callback function)")

        if isoper(c):
            cdc = c.dag() * c
            L_list.append([liouvillian_fast(None, [c], data_only=True),
                           c_coeff, c_square])

        elif issuper(c):
            L_list.append([c.data, c_coeff, c_square])

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "collapse operators (expected operator or " +
                            "superoperator)")

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    if opt.rhs_with_state:
        r = scipy.integrate.ode(drho_list_td_with_state)
    else:
        r = scipy.integrate.ode(drho_list_td)
    r.set_integrator('zvode', method=opt.method, order=opt.order,
                     atol=opt.atol, rtol=opt.rtol, nsteps=opt.nsteps,
                     first_step=opt.first_step, min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    r.set_f_params(L_list, args)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Ejemplo n.º 8
0
def _mesolve_func_td(L_func, rho0, tlist, c_op_list, e_ops, args, opt,
                     progress_bar):
    """!
    Evolve the density matrix using an ODE solver with time dependent
    Hamiltonian.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    new_args = None

    if len(c_op_list) > 0:
        L_data = liouvillian_fast(None, c_op_list).data
    else:
        n, m = rho0.shape
        L_data = sp.csr_matrix((n**2, m**2), dtype=complex)

    if type(args) is dict:
        new_args = {}
        for key in args:
            if isinstance(args[key], Qobj):
                if isoper(args[key]):
                    new_args[key] = (-1j *
                                     (spre(args[key]) - spost(args[key]))).data
                else:
                    new_args[key] = args[key].data
            else:
                new_args[key] = args[key]

    elif type(args) is list:
        new_args = []
        for arg in args:
            if isinstance(arg, Qobj):
                if isoper(arg):
                    new_args.append((-1j * (spre(arg) - spost(arg))).data)
                else:
                    new_args.append(arg.data)
            else:
                new_args.append(arg)

    else:
        if isinstance(args, Qobj):
            if isoper(args):
                new_args = (-1j * (spre(args) - spost(args))).data
            else:
                new_args = args.data
        else:
            new_args = args

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    if not opt.rhs_with_state:
        r = scipy.integrate.ode(cy_ode_rho_func_td)
    else:
        r = scipy.integrate.ode(_ode_rho_func_td_with_state)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     nsteps=opt.nsteps,
                     first_step=opt.first_step,
                     min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    r.set_f_params(L_data, L_func, new_args)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Ejemplo n.º 9
0
def _mesolve_list_td(H_func, rho0, tlist, c_op_list, e_ops, args, opt,
                     progress_bar):
    """!
    Evolve the density matrix using an ODE solver with time dependent
    Hamiltonian.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        # if initial state is a ket and no collapse operator where given,
        # fall back on the unitary schrodinger equation solver
        if len(c_op_list) == 0:
            return _sesolve_list_td(H_func, rho0, tlist, e_ops, args, opt)

        # Got a wave function as initial state: convert to density matrix.
        rho0 = ket2dm(rho0)

    #
    # construct liouvillian
    #
    if len(H_func) != 2:
        raise TypeError('Time-dependent Hamiltonian list must have two terms.')
    if not isinstance(H_func[0], (list, np.ndarray)) or len(H_func[0]) <= 1:
        raise TypeError('Time-dependent Hamiltonians must be a list ' +
                        'with two or more terms')
    if (not isinstance(H_func[1], (list, np.ndarray))) or \
       (len(H_func[1]) != (len(H_func[0]) - 1)):
        raise TypeError('Time-dependent coefficients must be list with ' +
                        'length N-1 where N is the number of ' +
                        'Hamiltonian terms.')

    if opt.rhs_reuse and odeconfig.tdfunc is None:
        rhs_generate(H_func, args)

    lenh = len(H_func[0])
    if opt.tidy:
        H_func[0] = [(H_func[0][k]).tidyup() for k in range(lenh)]
    L_func = [[liouvillian_fast(H_func[0][0], c_op_list)], H_func[1]]
    for m in range(1, lenh):
        L_func[0].append(liouvillian_fast(H_func[0][m], []))

    # create data arrays for time-dependent RHS function
    Ldata = [L_func[0][k].data.data for k in range(lenh)]
    Linds = [L_func[0][k].data.indices for k in range(lenh)]
    Lptrs = [L_func[0][k].data.indptr for k in range(lenh)]
    # setup ode args string
    string = ""
    for k in range(lenh):
        string += ("Ldata[%d], Linds[%d], Lptrs[%d]," % (k, k, k))

    if args:
        td_consts = args.items()
        for elem in td_consts:
            string += str(elem[1])
            if elem != td_consts[-1]:
                string += (",")

    # run code generator
    if not opt.rhs_reuse or odeconfig.tdfunc is None:
        if opt.rhs_filename is None:
            odeconfig.tdname = "rhs" + str(odeconfig.cgen_num)
        else:
            odeconfig.tdname = opt.rhs_filename
        cgen = Codegen(h_terms=n_L_terms,
                       h_tdterms=Lcoeff,
                       args=args,
                       odeconfig=odeconfig)
        cgen.generate(odeconfig.tdname + ".pyx")

        code = compile('from ' + odeconfig.tdname + ' import cyq_td_ode_rhs',
                       '<string>', 'exec')
        exec(code, globals())
        odeconfig.tdfunc = cyq_td_ode_rhs

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    r = scipy.integrate.ode(odeconfig.tdfunc)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     nsteps=opt.nsteps,
                     first_step=opt.first_step,
                     min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    code = compile('r.set_f_params(' + string + ')', '<string>', 'exec')
    exec(code)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Ejemplo n.º 10
0
def _mesolve_list_func_td(H_list, rho0, tlist, c_list, e_ops, args, opt,
                          progress_bar):
    """
    Internal function for solving the master equation. See mesolve for usage.
    """

    if debug:
        print(inspect.stack()[0][3])

    #
    # check initial state
    #
    if isket(rho0):
        rho0 = rho0 * rho0.dag()

    #
    # construct liouvillian in list-function format
    #
    L_list = []
    if opt.rhs_with_state:
        constant_func = lambda x, y, z: 1.0
    else:
        constant_func = lambda x, y: 1.0

    # add all hamitonian terms to the lagrangian list
    for h_spec in H_list:

        if isinstance(h_spec, Qobj):
            h = h_spec
            h_coeff = constant_func

        elif isinstance(h_spec, list) and isinstance(h_spec[0], Qobj):
            h = h_spec[0]
            h_coeff = h_spec[1]

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "Hamiltonian (expected callback function)")

        if isoper(h):
            L_list.append([(-1j * (spre(h) - spost(h))).data, h_coeff, False])

        elif issuper(h):
            L_list.append([h.data, h_coeff, False])

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "Hamiltonian (expected operator or superoperator)")

    # add all collapse operators to the lagrangian list
    for c_spec in c_list:

        if isinstance(c_spec, Qobj):
            c = c_spec
            c_coeff = constant_func
            c_square = False

        elif isinstance(c_spec, list) and isinstance(c_spec[0], Qobj):
            c = c_spec[0]
            c_coeff = c_spec[1]
            c_square = True

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "collapse operators (expected callback function)")

        if isoper(c):
            cdc = c.dag() * c
            L_list.append([
                liouvillian_fast(None, [c], data_only=True), c_coeff, c_square
            ])

        elif issuper(c):
            L_list.append([c.data, c_coeff, c_square])

        else:
            raise TypeError("Incorrect specification of time-dependent " +
                            "collapse operators (expected operator or " +
                            "superoperator)")

    #
    # setup integrator
    #
    initial_vector = mat2vec(rho0.full()).ravel()
    if opt.rhs_with_state:
        r = scipy.integrate.ode(drho_list_td_with_state)
    else:
        r = scipy.integrate.ode(drho_list_td)
    r.set_integrator('zvode',
                     method=opt.method,
                     order=opt.order,
                     atol=opt.atol,
                     rtol=opt.rtol,
                     nsteps=opt.nsteps,
                     first_step=opt.first_step,
                     min_step=opt.min_step,
                     max_step=opt.max_step)
    r.set_initial_value(initial_vector, tlist[0])
    r.set_f_params(L_list, args)

    #
    # call generic ODE code
    #
    return _generic_ode_solve(r, rho0, tlist, e_ops, opt, progress_bar)
Ejemplo n.º 11
0
def smesolve_generic(ssdata, options, progress_bar):
    """
    internal

    .. note::

        Experimental.

    """
    if debug:
        print(inspect.stack()[0][3])

    N_store = len(ssdata.tlist)
    N_substeps = ssdata.nsubsteps
    N = N_store * N_substeps
    dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps
    NT = ssdata.ntraj

    data = Odedata()
    data.solver = "smesolve"
    data.times = ssdata.tlist
    data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.noise = []
    data.measurement = []

    # pre-compute suporoperator operator combinations that are commonly needed
    # when evaluating the RHS of stochastic master equations
    A_ops = []
    for c_idx, c in enumerate(ssdata.sc_ops):

        n = c.dag() * c
        A_ops.append([spre(c).data, spost(c).data,
                      spre(c.dag()).data, spost(c.dag()).data,
                      spre(n).data, spost(n).data,
                      (spre(c) * spost(c.dag())).data,
                      lindblad_dissipator(c, data_only=True)])

    s_e_ops = [spre(e) for e in ssdata.e_ops]

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian_fast(ssdata.H, ssdata.c_ops)

    progress_bar.start(ssdata.ntraj)

    for n in range(ssdata.ntraj):
        progress_bar.update(n)

        rho_t = mat2vec(ssdata.state0.full()).ravel()

        noise = ssdata.noise[n] if ssdata.noise else None

        states_list, dW, m = _smesolve_single_trajectory(
            L, dt, ssdata.tlist, N_store, N_substeps,
            rho_t, A_ops, s_e_ops, data, ssdata.rhs,
            ssdata.d1, ssdata.d2, ssdata.d2_len, ssdata.homogeneous,
            ssdata.distribution, ssdata.args,
            store_measurement=ssdata.store_measurement,
            store_states=ssdata.store_states, noise=noise)

        data.states.append(states_list)
        data.noise.append(dW)
        data.measurement.append(m)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum(state_list).unit() for state_list in data.states]

    # average
    data.expect = data.expect / NT

    # standard error
    if NT > 1:
        data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1))
    else:
        data.se = None

    # convert complex data to real if hermitian
    data.expect = [np.real(data.expect[n,:]) if e.isherm else data.expect[n,:]
                   for n, e in enumerate(ssdata.e_ops)]

    return data
Ejemplo n.º 12
0
def smepdpsolve_generic(ssdata, options, progress_bar):
    """
    For internal use.

    .. note::

        Experimental.

    """
    if debug:
        print(inspect.stack()[0][3])

    N_store = len(ssdata.tlist)
    N_substeps = ssdata.nsubsteps
    N = N_store * N_substeps
    dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps
    NT = ssdata.ntraj

    data = Odedata()
    data.solver = "smepdpsolve"
    data.times = ssdata.tlist
    data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.jump_times = []
    data.jump_op_idx = []

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian_fast(ssdata.H, ssdata.c_ops)
        
    progress_bar.start(ssdata.ntraj)

    for n in range(ssdata.ntraj):
        progress_bar.update(n)
        rho_t = mat2vec(ssdata.rho0.full()).ravel()

        states_list, jump_times, jump_op_idx = \
            _smepdpsolve_single_trajectory(L, dt, ssdata.tlist,
                                           N_store, N_substeps,
                                           rho_t, ssdata.c_ops, ssdata.e_ops, 
                                           data)

        data.states.append(states_list)
        data.jump_times.append(jump_times)
        data.jump_op_idx.append(jump_op_idx)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum(state_list).unit() for state_list in data.states]
    
    # average
    data.expect = data.expect / ssdata.ntraj

    # standard error
    if NT > 1:
        data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1))
    else:
        data.se = None

    return data
Ejemplo n.º 13
0
def smesolve_generic(ssdata, options, progress_bar):
    """
    internal

    .. note::

        Experimental.

    """
    if debug:
        print(inspect.stack()[0][3])

    N_store = len(ssdata.tlist)
    N_substeps = ssdata.nsubsteps
    N = N_store * N_substeps
    dt = (ssdata.tlist[1] - ssdata.tlist[0]) / N_substeps
    NT = ssdata.ntraj

    data = Odedata()
    data.solver = "smesolve"
    data.times = ssdata.tlist
    data.expect = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.ss = np.zeros((len(ssdata.e_ops), N_store), dtype=complex)
    data.noise = []
    data.measurement = []

    # pre-compute suporoperator operator combinations that are commonly needed
    # when evaluating the RHS of stochastic master equations
    A_ops = []
    for c_idx, c in enumerate(ssdata.sc_ops):

        n = c.dag() * c
        A_ops.append([spre(c).data, spost(c).data,
                      spre(c.dag()).data, spost(c.dag()).data,
                      spre(n).data, spost(n).data,
                      (spre(c) * spost(c.dag())).data,
                      lindblad_dissipator(c, data_only=True)])

    s_e_ops = [spre(e) for e in ssdata.e_ops]

    # Liouvillian for the deterministic part.
    # needs to be modified for TD systems
    L = liouvillian_fast(ssdata.H, ssdata.c_ops)

    progress_bar.start(ssdata.ntraj)

    for n in range(ssdata.ntraj):
        progress_bar.update(n)

        rho_t = mat2vec(ssdata.state0.full()).ravel()

        noise = ssdata.noise[n] if ssdata.noise else None

        states_list, dW, m = _smesolve_single_trajectory(
            L, dt, ssdata.tlist, N_store, N_substeps,
            rho_t, A_ops, s_e_ops, data, ssdata.rhs,
            ssdata.d1, ssdata.d2, ssdata.d2_len, ssdata.homogeneous,
            ssdata.distribution, ssdata.args,
            store_measurement=ssdata.store_measurement,
            store_states=ssdata.store_states, noise=noise)

        data.states.append(states_list)
        data.noise.append(dW)
        data.measurement.append(m)

    progress_bar.finished()

    # average density matrices
    if options.average_states and np.any(data.states):
        data.states = [sum(state_list).unit() for state_list in data.states]

    # average
    data.expect = data.expect / NT

    # standard error
    if NT > 1:
        data.se = (data.ss - NT * (data.expect ** 2)) / (NT * (NT - 1))
    else:
        data.se = None

    # convert complex data to real if hermitian
    data.expect = [np.real(data.expect[n,:]) if e.isherm else data.expect[n,:]
                   for n, e in enumerate(ssdata.e_ops)]

    return data