Ejemplo n.º 1
0
 def test_invariant_under_unitary_transformation(self, dimension):
     rho1 = rand_dm(dimension, 0.25)
     rho2 = rand_dm(dimension, 0.25)
     U = rand_unitary(dimension, 0.25)
     F = fidelity(rho1, rho2)
     FU = fidelity(U * rho1 * U.dag(), U * rho2 * U.dag())
     assert F == pytest.approx(FU, rel=1e-5)
Ejemplo n.º 2
0
    def testNoise(self):
        """
        Test for Processor with noise
        """
        # setup and fidelity without noise
        init_state = qubit_states(2, [0, 0, 0, 0])
        tlist = np.array([0., np.pi / 2.])
        a = destroy(2)
        proc = Processor(N=2)
        proc.add_control(sigmax(), targets=1, label="sx")
        proc.set_all_coeffs({"sx": np.array([1.])})
        proc.set_all_tlist(tlist)
        result = proc.run_state(init_state=init_state)
        assert_allclose(fidelity(result.states[-1],
                                 qubit_states(2, [0, 1, 0, 0])),
                        1,
                        rtol=1.e-7)

        # decoherence noise
        dec_noise = DecoherenceNoise([0.25 * a], targets=1)
        proc.add_noise(dec_noise)
        result = proc.run_state(init_state=init_state)
        assert_allclose(fidelity(result.states[-1],
                                 qubit_states(2, [0, 1, 0, 0])),
                        0.981852,
                        rtol=1.e-3)

        # white random noise
        proc.model._noise = []
        white_noise = RandomNoise(0.2, np.random.normal, loc=0.1, scale=0.1)
        proc.add_noise(white_noise)
        result = proc.run_state(init_state=init_state)
Ejemplo n.º 3
0
    def test_hadamard_pulse(self):
        system = self.system
        q0 = system.q0
        q1 = system.q1
        init_state = system.fock()
        target_fidelity = 1 - 1e-6

        for i, qubit in enumerate([q0, q1]):

            seq = QasmSequence(system)

            # h
            ideal = qubit.hadamard()
            seq.qasm(f"h q[{i}];", unitary=False, append=True)
            result = seq.run(init_state)
            state = result.states[-1]

            self.assertGreater(
                fidelity(state, ideal * init_state) ** 2, target_fidelity
            )
            seq.clear()

            # U2(0, \pi) = H
            ideal = qubit.hadamard()
            seq.qasm(f"u2(0,pi) q[{i}];", unitary=False, append=True)
            result = seq.run(init_state)
            state = result.states[-1]
            self.assertGreater(
                fidelity(state, ideal * init_state) ** 2, target_fidelity
            )
            seq.clear()
Ejemplo n.º 4
0
    def test_ry_pulse(self):
        system = self.system
        q0 = system.q0
        q1 = system.q1
        init_state = system.fock()
        target_fidelity = 1 - 1e-6

        for i, qubit in enumerate([q0, q1]):

            seq = QasmSequence(system)

            for denom in [1, 2, 3, 4]:
                ideal = qubit.Ry(-np.pi / denom)
                seq.qasm(f"ry(-pi/{denom}) q[{i}];", unitary=False, append=True)
                result = seq.run(init_state)
                state = result.states[-1]
                self.assertGreater(
                    fidelity(state, ideal * init_state) ** 2, target_fidelity
                )
                seq.clear()

                # U(\theta, 0, 0) = R_y(\theta)
                ideal = qubit.Ry(np.pi / denom)
                seq.qasm(f"U(pi/{denom},0,0) q[{i}];", unitary=False, append=True)
                result = seq.run(init_state)
                state = result.states[-1]
                self.assertGreater(
                    fidelity(state, ideal * init_state) ** 2, target_fidelity
                )
                seq.clear()
Ejemplo n.º 5
0
 def get_fidelity_with(self,
                       target_state: Union[str, Qobj] = "ghz") -> float:
     """
     :param target_state: One of "ghz", "ghz_antisymmetric", "ground", and "excited"
     :return:
     """
     assert (self.solve_result is not None
             ), "solve_result attribute cannot be None (call solve method)"
     final_state = self.solve_result.states[-1]
     if target_state == "ghz":
         return fidelity(final_state,
                         self.ghz_state.get_state_tensor(symmetric=True))**2
     elif target_state == "ghz_antisymmetric":
         return fidelity(
             final_state,
             self.ghz_state.get_state_tensor(symmetric=False))**2
     elif target_state == "ground":
         return fidelity(final_state, tensor(*get_ground_states(self.N)))**2
     elif target_state == "excited":
         return fidelity(final_state,
                         tensor(*get_excited_states(self.N)))**2
     elif isinstance(target_state, Qobj):
         return fidelity(final_state, target_state)**2
     else:
         raise ValueError(
             f"target_state has to be one of 'ghz', 'ground', or 'excited', not {target_state}."
         )
Ejemplo n.º 6
0
    def test_rotations_pulse(self):
        q0 = Transmon("q0", levels=2)
        q1 = Transmon("q1", levels=3, kerr=-200e-3)
        q0.gaussian_pulse.sigma = 40
        q1.gaussian_pulse.sigma = 40
        system = System("system", modes=[q0, q1])
        init_state = system.fock()

        for qubit in [q0, q1]:
            for _ in range(1):
                _ = tune_rabi(system,
                              init_state=init_state,
                              mode_name=qubit.name,
                              verify=False)

        angles = np.linspace(-np.pi, np.pi, 5)
        for angle in angles:
            for qubit in [q0, q1]:
                seq = get_sequence(system)
                qubit.rotate_x(angle)
                unitary = qubit.rotate_x(angle, unitary=True)
                result = seq.run(init_state)
                fidelity = qutip.fidelity(result.states[-1],
                                          unitary * init_state)**2
                self.assertGreater(fidelity, 1 - 1e-2)

                seq = get_sequence(system)
                qubit.rotate_y(angle)
                unitary = qubit.rotate_y(angle, unitary=True)
                result = seq.run(init_state)
                fidelity = qutip.fidelity(result.states[-1],
                                          unitary * init_state)**2
                self.assertGreater(fidelity, 1 - 1e-2)
 def test_env_error(self):
     print("----------Test env dephasing-----------")
     n_steps = 10
     rho_noise1 = errs.env_error(rho_test, 20, .3, 25e-6, 2, [0, 1])
     rho_noise2 = errs.env_error(rho_test, 0, .3, 25e-6, 2, [0, 1])
     # print(rho_noise1)
     # print(rho_noise.tr())
     print(qt.fidelity(rho_noise1, psi_test))
     print(qt.fidelity(rho_noise2, psi_test))
Ejemplo n.º 8
0
    def fitfunc(x):

        L = len(x) / 3

        x_noinit = x[0:L]
        x_up = x[L:2 * L]
        x_down = x[2 * L:3 * L]

        ### Initial states
        rho_c1 = F1() * rho0 + (1 - F1()) * rho1
        rho_c2_up = F2() * rho0 + (1 - F2()) * rho1
        rho_c2_down = (1 - F2()) * rho0 + F2() * rho1
        rho_c2_noinit = 0.5 * rho0 + 0.5 * rho1
        rho_up = qutip.tensor(rhox, rho_c1, rho_c2_up)
        rho_down = qutip.tensor(rhox, rho_c1, rho_c2_down)
        rho_noinit = qutip.tensor(rhox, rho_c1, rho_c2_noinit)

        ### Hamiltonian
        H = 2 * np.pi * (det() * qutip.tensor(szz, Id, Id) + 430e3 *
                         (qutip.tensor(Id, sz, Id) + qutip.tensor(Id, Id, sz))
                         + A_par_1() * qutip.tensor(szz, sz, Id) +
                         A_perp_1() * qutip.tensor(szz, sx, Id) +
                         A_par_2() * qutip.tensor(szz, Id, sz) +
                         A_perp_2() * qutip.tensor(szz, Id, sx))

        Fid_up = np.zeros(len(x_up))
        Fid_down = np.zeros(len(x_down))
        Fid_noinit = np.zeros(len(x_noinit))

        for ii, tau in enumerate(x_up):
            expH = (-1j * H * tau).expm()

            ### State evolution
            rho_final_up = expH * rho_up * expH.dag()
            rho_final_down = expH * rho_down * expH.dag()
            rho_final_noinit = expH * rho_noinit * expH.dag()

            ### Trace out the electron
            rho_el_final_up = rho_final_up.ptrace(
                0)  # Trace out the nuclear spins
            rho_el_final_down = rho_final_down.ptrace(
                0)  # Trace out the nuclear spins
            rho_el_final_noinit = rho_final_noinit.ptrace(
                0)  # Trace out the nuclear spins

            ### Final fidelity
            Fid_up[ii] = 0.5 + 0.5 * (2 * qutip.fidelity(
                rhox, rho_el_final_up)**2 - 1) * np.exp(-(tau / t())**2)
            Fid_down[ii] = 0.5 + 0.5 * (2 * qutip.fidelity(
                rhox, rho_el_final_down)**2 - 1) * np.exp(-(tau / t())**2)
            Fid_noinit[ii] = 0.5 + 0.5 * (2 * qutip.fidelity(
                rhox, rho_el_final_noinit)**2 - 1) * np.exp(-(tau / t())**2)

        Fid = np.r_[Fid_noinit, Fid_up, Fid_down]
        return Fid
Ejemplo n.º 9
0
    def test_qasm_circuit_pulse(self):
        qreg = self.qreg
        n = len(qreg.active_modes)
        QASM_CIRCUIT = [
            "OPENQASM 2.0;",
            'include "qelib1.inc";',
            f"qreg q[{n}];",
            "h q[0];",
            "barrier;",
        ]
        QASM_CIRCUIT.extend([f"CX q[0],q[{i}];" for i in range(1, n)])

        QASM_CIRCUIT = "\n\t".join([""] + QASM_CIRCUIT)

        print("Running the following QASM circuit:")
        print(QASM_CIRCUIT)

        seq = QasmSequence(qreg)
        seq.qasm_circuit(QASM_CIRCUIT, unitary=False, append=True)

        _ = seq.plot_coefficients(subplots=False)

        result = seq.run(qreg.ground_state())

        fid = fidelity(result.states[-1], self.ideal_state) ** 2
        print(
            f"Pulsed qasm_circuit Bell state fidelity "
            f"(n = {len(qreg.active_modes)}): {fid:.7f}."
        )
        self.assertLess(1 - fid, 1e-6)
Ejemplo n.º 10
0
    def timescan(self, nT=100, **kwargs):
        # do a gate dynamics time scan
        # !!! If parameters are not separately specified, chooses optimal gate parameters
        # for programmed gate detuning

        self.set_custom_parameters(**kwargs)

        # initialize result vectors
        end_populations_dndn = []
        end_populations_upup = []
        end_populations_updn = []
        end_populations_dnup = []
        fidelities = []

        times, final_rhos = self.do_gate(nT=nT)

        for ii in range(len(times)):

            end_populations_upup.append(expect(self.spin_upup, final_rhos[ii]))
            end_populations_dndn.append(expect(self.spin_dndn, final_rhos[ii]))
            end_populations_updn.append(expect(self.spin_updn, final_rhos[ii]))
            end_populations_dnup.append(expect(self.spin_dnup, final_rhos[ii]))

            rho_target = 1 / 2 * (self.uu_uu + self.dd_dd - 1j * self.ud_ud +
                                  1j * self.du_du)
            fidelities.append(
                fidelity(rho_target, ptrace(final_rhos[ii], [0, 1]))**2)

        return times, end_populations_upup, end_populations_dndn, end_populations_updn, end_populations_dnup, fidelities
def extract_ft(ignore_percent, ghzs, times):
    N = len(times)
    ignore_number = int(N*ignore_percent/100)

    indices_sorted = np.argsort(times)
    t_sorted = times[indices_sorted]

    if ignore_number != 0:
        t_max = t_sorted[:-ignore_number][-1]
        tavg = np.average(times[indices_sorted][:-ignore_number])
        tstd = np.std(times[indices_sorted][:-ignore_number])
        ghz = np.sum(ghzs[indices_sorted][:-ignore_number])
    else:
        t_max = t_sorted[-1]
        tavg = np.average(times)
        tstd = np.std(times)
        ghz = np.sum(ghzs)

    ghz = ghz/(N - ignore_number)
    ghz = stab.twirl_ghz(ghz)
    fidelity = qt.fidelity(ghz, ghz_ref)

    print("_____________________________________________________")
    print("N: ", N)
    print("T_avg: ", tavg, tstd)
    print("TIME_MAX:", t_max)
    print("F: ", fidelity)


    return fidelity, t_max
Ejemplo n.º 12
0
    def plot_ghz_states_overlaps(self,
                                 ax,
                                 with_antisymmetric_ghz: bool,
                                 plot_title: bool = True):
        labelled_states = [(self.ghz_state.get_state_tensor(),
                            r"$\psi_{\mathrm{GHZ}}^{\mathrm{s}}$")]
        if with_antisymmetric_ghz is not None:
            labelled_states.append(
                (self.ghz_state.get_state_tensor(symmetric=False),
                 r"$\psi_{\mathrm{GHZ}}^{\mathrm{a}}$"))

        for _state, _label in labelled_states:
            ax.plot(self.t_list, [
                fidelity(_state, _instantaneous_state)**2
                for _instantaneous_state in self.solve_result.states
            ],
                    label=_label,
                    lw=1,
                    alpha=0.8)
        ax.set_ylabel("Fidelity")
        if plot_title:
            ax.set_title("Fidelity with GHZ states")
        ax.set_ylim((-0.1, 1.1))
        ax.yaxis.set_ticks([0, 0.5, 1])
        ax.legend()
 def test_two_qubit_error(self):
     print("----------Test two qubit error-----------")
     p = .09
     rho_noise = errs.two_qubit_gate_noise(rho_test, p, 2, 0, 1)
     print(rho_noise)
     print(rho_noise.tr())
     print(qt.fidelity(rho_noise, psi_test))
Ejemplo n.º 14
0
def test_score(params, x, y):
    """Calculates the average fidelity 
    between the predicted and output 
    kets for a given on the whole dataset.
       
    Args:
        params (obj:`np.ndarray`): parameters 
            :math:`\t` and :math:`\tau` in :math:
            `U^{\dagger} U(\vec{t},\vec{\tau})`
        inputs (obj:`np.ndarray`): input kets 
            :math:`|\psi_{l} \rangle` in the dataset 
        outputs (obj:`np.ndarray`): output kets 
            :math:`U(\vec{t}, \vec{\tau})
            |ket_{input}\rangle` in the dataset
           
       Returns:
           float: fidelity between :math:`U(\vec{t}, 
               \vec{\tau})|ket_{input} \rangle` and the output
               (label) kets for parameters :math:`\vec{t},
               \vec{\tau}` averaged over the entire training set.
       """
    fidel = 0
    for i in range(train_len):
        pred = np.matmul(make_unitary(N, params), x[i])
        step_fidel = fidelity(Qobj(pred), Qobj(y[i]))
        fidel += step_fidel

    return fidel / train_len
Ejemplo n.º 15
0
    def scan_efficiency(self,
                        ndot=0,
                        fact_vec=[1, 2, 3, 4, 5],
                        tau_mot=0,
                        gamma_el=0,
                        gamma_ram=0,
                        tau_spin=0):

        if self.species is not 'effic_test':
            raise TypeError(
                'Need species effic_test for this to work (factor not implemented for other ions species)'
            )

        # initialize result vectors
        errors = []
        efficiencies = []
        rho_target = 1 / 2 * (self.uu_uu + self.dd_dd - 1j * self.ud_ud +
                              1j * self.du_du)
        self.set_mot_dephasing_time(tau_mot)
        self.set_el_deph_rate(gamma_el)
        self.set_ram_scat_rate(gamma_ram)
        self.set_spin_dephasing_time(tau_spin)

        for factor in fact_vec:
            self.set_eff_factor(factor)
            self.set_heating_rate(ndot)
            times, final_rhos = self.do_gate()
            errors.append(
                1 - fidelity(rho_target, ptrace(final_rhos[-1], [0, 1]))**2)
            efficiencies.append(self.calc_gate_eff())

        return fact_vec, errors, efficiencies
Ejemplo n.º 16
0
    def test_multi_qubits(self):
        """
        Test for multi-qubits system.
        """
        N = 3
        H_d = tensor([sigmaz()] * 3)
        H_c = []

        # test empty ctrls
        num_tslots = 30
        evo_time = 10
        test = OptPulseProcessor(N)
        test.add_drift(H_d, [0, 1, 2])
        test.add_control(tensor([sigmax(), sigmax()]), cyclic_permutation=True)
        # test periodically adding ctrls
        sx = sigmax()
        iden = identity(2)
        assert (len(test.get_control_labels()) == 3)
        test.add_control(sigmax(), cyclic_permutation=True)
        test.add_control(sigmay(), cyclic_permutation=True)

        # test pulse genration for cnot gate, with kwargs
        qc = [tensor([identity(2), cnot()])]
        test.load_circuit(qc,
                          num_tslots=num_tslots,
                          evo_time=evo_time,
                          min_fid_err=1.0e-6)
        rho0 = qubit_states(3, [1, 1, 1])
        rho1 = qubit_states(3, [1, 1, 0])
        result = test.run_state(rho0, options=SolverOptions(store_states=True))
        assert_(fidelity(result.states[-1], rho1) > 1 - 1.0e-6)
Ejemplo n.º 17
0
    def test_simple_hadamard(self):
        """
        Test for optimizing a simple hadamard gate
        """
        N = 1
        H_d = sigmaz()
        H_c = sigmax()
        qc = QubitCircuit(N)
        qc.add_gate("SNOT", 0)

        # test load_circuit, with verbose info
        num_tslots = 10
        evo_time = 10
        test = OptPulseProcessor(N, drift=H_d)
        test.add_control(H_c, targets=0)
        tlist, coeffs = test.load_circuit(qc,
                                          num_tslots=num_tslots,
                                          evo_time=evo_time,
                                          verbose=True)

        # test run_state
        rho0 = qubit_states(1, [0])
        plus = (qubit_states(1, [0]) + qubit_states(1, [1])).unit()
        result = test.run_state(rho0)
        assert_allclose(fidelity(result.states[-1], plus), 1, rtol=1.0e-6)
Ejemplo n.º 18
0
 def get_fid(self, args=None, phi_tgt=None):
     if args is not None:
         self.run(args)
     if phi_tgt is not None:
         self.phi_tgt = phi_tgt
     self.fid = np.square(fidelity(self.final_state, self.phi_tgt))
     return self.fid
Ejemplo n.º 19
0
    def test_multi_gates(self):
        N = 2
        H_d = tensor([sigmaz()]*2)
        H_c = []

        test = OptPulseProcessor(N)
        test.add_drift(H_d, [0, 1])
        test.add_control(sigmax(), cyclic_permutation=True)
        test.add_control(sigmay(), cyclic_permutation=True)
        test.add_control(tensor([sigmay(), sigmay()]))

        # qubits circuit with 3 gates
        setting_args = {"SNOT": {"num_tslots": 10, "evo_time": 1},
                        "SWAP": {"num_tslots": 30, "evo_time": 3},
                        "CNOT": {"num_tslots": 30, "evo_time": 3}}
        qc = QubitCircuit(N)
        qc.add_gate("SNOT", 0)
        qc.add_gate("SWAP", targets=[0, 1])
        qc.add_gate('CNOT', controls=1, targets=[0])
        test.load_circuit(qc, setting_args=setting_args,
                          merge_gates=False)

        rho0 = rand_ket(4)  # use random generated ket state
        rho0.dims = [[2, 2], [1, 1]]
        U = gate_sequence_product(qc.propagators())
        rho1 = U * rho0
        result = test.run_state(rho0)
        assert_(fidelity(result.states[-1], rho1) > 1-1.0e-6)
Ejemplo n.º 20
0
    def test_u2_pulse(self):
        system = self.system
        q0 = system.q0
        q1 = system.q1
        init_state = system.fock()
        target_fidelity = 1 - 1e-6

        for i, qubit in enumerate([q0, q1]):

            # U2(\phi, \lambda) = RZ(\phi) RY(\frac{\pi}{2}) RZ(\lambda)
            for phi_denom in [1, 2, 3, 4]:
                for lam_denom in [1, 2, 3, 4]:
                    seq = QasmSequence(system)
                    ideal = (
                        qubit.Rz(np.pi / phi_denom)
                        * qubit.Ry(np.pi / 2)
                        * qubit.Rz(np.pi / lam_denom)
                    )
                    seq.qasm(
                        f"u2(pi/{phi_denom},pi/{lam_denom}) q[{i}];",
                        unitary=False,
                        append=True,
                    )
                    result = seq.run(init_state)
                    state = result.states[-1]
                    self.assertGreater(
                        fidelity(state, ideal * init_state) ** 2, target_fidelity
                    )
Ejemplo n.º 21
0
    def detuning_scan(self, delta_g_vec, delta_g_0=None, **kwargs):
        # do a gate dynamics frequency scan
        # !!! If parameters are not separately specified, chooses optimal gate parameters
        # for programmed gate detuning

        self.set_custom_parameters(delta_g=delta_g_0, **kwargs)

        # initialize result vectors
        end_populations_dndn = []
        end_populations_upup = []
        end_populations_updn = []
        end_populations_dnup = []
        fidelities = []

        for delta_g in delta_g_vec:
            self.set_gate_detuning(delta_g)
            times, final_rhos = self.do_gate(nT=2)

            end_populations_upup.append(expect(self.spin_upup, final_rhos[-1]))
            end_populations_dndn.append(expect(self.spin_dndn, final_rhos[-1]))
            end_populations_updn.append(expect(self.spin_updn, final_rhos[-1]))
            end_populations_dnup.append(expect(self.spin_dnup, final_rhos[-1]))

            rho_target = 1 / 2 * (self.uu_uu + self.dd_dd - 1j * self.ud_ud +
                                  1j * self.du_du)
            fidelities.append(
                fidelity(rho_target, ptrace(final_rhos[-1], [0, 1]))**2)

        return end_populations_upup, end_populations_dndn, end_populations_updn, end_populations_dnup, fidelities
Ejemplo n.º 22
0
def run_operator(state, QI_a, QQ_a, QI_c, QQ_c, show_fid_graph=False):
    start_time = time.time_ns()

    fid = []

    prod = 1
    for k in range(num_time_steps):
        H = H0 + Ha_I * QI_a[k] + Ha_Q * QQ_a[k] + Hc_I * QI_c[
            k] + Hc_Q * QQ_c[k]
        U = ((-1j * dt) * H).expm()
        prod = U * prod
        bl.add_states(qt.ptrace(prod * state, 0))
        fid.append(qt.fidelity(prod * state, state_target * state_init))

    result = prod * state

    if show_fid_graph:
        fig, ax = plt.subplots(1, 1)
        ax.plot(times, fid)
        ax.set_title("Fidelity Over Time")
        ax.set_xlabel('Time (sec)')
        ax.set_ylabel('Fidelity')

    print("-    Simulating the system took",
          str((time.time_ns() - start_time) * 1e-9)[0:4], "Seconds")
    return result
Ejemplo n.º 23
0
    def scan_tilt_angle(self,
                        angle_max=10 / 360 * 2 * pi,
                        angle_min=-10 / 360 * 2 * pi,
                        n_steps=10,
                        mode_name='rad_ip_l',
                        **kwargs):
        # simulate gate fidelity for different heating rates
        # initialize result vectors
        self.set_custom_parameters(**kwargs)

        errors = []
        rho_target = tensor(self.dn_dn, self.dn_dn)
        tilt_angles = np.linspace(angle_min, angle_max, n_steps)

        self.set_ion_temp(self.modes.modes[mode_name].nbar)
        detuning_offset = self.omega_z - self.modes.modes[mode_name].freq
        self.set_gate_detuning(self.delta_g + detuning_offset)

        for angle in tilt_angles:
            self.set_lamb_dicke_factors(mode_name=mode_name,
                                        raman_misalignment=angle)
            times, final_rhos = self.do_gate()
            errors.append(
                1 - fidelity(rho_target, ptrace(final_rhos[-1], [0, 1]))**2)

        return tilt_angles, errors
Ejemplo n.º 24
0
    def test_N_level_system(self):
        """
        Test for circuit with N-level system.
        """
        mat3 = qp.rand_unitary_haar(3)

        def controlled_mat3(arg_value):
            """
            A qubit control an operator acting on a 3 level system
            """
            control_value = arg_value
            dim = mat3.dims[0][0]
            return (tensor(fock_dm(2, control_value), mat3) +
                    tensor(fock_dm(2, 1 - control_value), identity(dim)))

        qc = QubitCircuit(2, dims=[3, 2])
        qc.user_gates = {"CTRLMAT3": controlled_mat3}
        qc.add_gate("CTRLMAT3", targets=[1, 0], arg_value=1)
        props = qc.propagators()
        final_fid = qp.average_gate_fidelity(mat3, ptrace(props[0], 0) - 1)
        assert pytest.approx(final_fid, 1.0e-6) == 1

        init_state = basis([3, 2], [0, 1])
        result = qc.run(init_state)
        final_fid = qp.fidelity(result, props[0] * init_state)
        assert pytest.approx(final_fid, 1.0e-6) == 1.
Ejemplo n.º 25
0
    def scan_t_g(self,
                 t_max=50e-6,
                 t_min=10e-6,
                 n_steps=10,
                 tau=0,
                 ndot=0,
                 factor=1,
                 gamma_el=0,
                 gamma_ram=0,
                 **kwargs):
        # simulate gate fidelity for different gate pulse durations, with delta_g
        # and Omega_R optimised for this t_g
        # i.e. determines scaling of errors due to eg heating with t_g
        errors = []
        rho_target = 1 / 2 * (self.uu_uu + self.dd_dd - 1j * self.ud_ud +
                              1j * self.du_du)
        ts = np.linspace(t_min, t_max, n_steps)

        for t_g in ts:
            delta_g = self.calc_ideal_gate_detuning(T=t_g, verbose=False)
            self.set_custom_parameters(delta_g=delta_g, **kwargs)
            times, final_rhos = self.do_gate()
            errors.append(
                1 - fidelity(rho_target, ptrace(final_rhos[-1], [0, 1]))**2)
        return ts, errors
Ejemplo n.º 26
0
def random_benchmark(state, **kwargs):
    target = root_iSWAP * state  #.ptrace([1,2])
    sim = Simulation(do_qt_mesolve, state=state, fname='2qtest.yaml')
    states = sim.run_solver(nsteps=1000,
                            steps=1000,
                            tau=1e-8,
                            progress_bar=True)
    return np.max([qt.fidelity(target, s) for s in states])
Ejemplo n.º 27
0
 def test_orthogonal(self, left_dm, right_dm, dimension):
     left = basis(dimension, 0)
     right = basis(dimension, dimension // 2)
     if left_dm:
         left = left.proj()
     if right_dm:
         right = right.proj()
     assert fidelity(left, right) == pytest.approx(0, abs=1e-6)
    def fitfunc(x):

        L = len(x)/3

        x_noinit   = x[0:L]
        x_up        = x[L:2*L]
        x_down      = x[2*L:3*L]

        ### Initial states
        rho_c1          = F1()*rho0 + (1-F1())*rho1
        rho_c2_up       = F2()*rho0 + (1-F2())*rho1
        rho_c2_down     = (1-F2())*rho0 + F2()*rho1
        rho_c2_noinit   = 0.5*rho0 + 0.5*rho1
        rho_up             = qutip.tensor(rhox,rho_c1,rho_c2_up)
        rho_down           = qutip.tensor(rhox,rho_c1,rho_c2_down)
        rho_noinit         = qutip.tensor(rhox,rho_c1,rho_c2_noinit)

        ### Hamiltonian
        H  =  2*np.pi*(det()*qutip.tensor(szz,Id,Id) + 431.9e3*(qutip.tensor(Id,sz,Id) + qutip.tensor(Id,Id,sz)) +
              A_par_1()*qutip.tensor(szz,sz,Id) + A_perp_1()*qutip.tensor(szz,sx,Id) +
              A_par_2()*qutip.tensor(szz,Id,sz) + A_perp_2()*qutip.tensor(szz,Id,sx) )

        Fid_up     = np.zeros(len(x_up))
        Fid_down   = np.zeros(len(x_down))
        Fid_noinit = np.zeros(len(x_noinit))

        for ii, tau in enumerate(x_up):
            expH = (-1j*H*tau).expm()

            ### State evolution
            rho_final_up        = expH * rho_up * expH.dag()
            rho_final_down      = expH * rho_down * expH.dag()
            rho_final_noinit    = expH * rho_noinit * expH.dag()

            ### Trace out the electron
            rho_el_final_up     = rho_final_up.ptrace(0)                  # Trace out the nuclear spins
            rho_el_final_down   = rho_final_down.ptrace(0)                  # Trace out the nuclear spins
            rho_el_final_noinit = rho_final_noinit.ptrace(0)                  # Trace out the nuclear spins

            ### Final fidelity
            Fid_up[ii]      = O() + 0.5*(2*qutip.fidelity(rhox, rho_el_final_up)**2 -1)* np.exp(-(tau/t()/1e-6)**2)
            Fid_down[ii]    = O() + 0.5*(2*qutip.fidelity(rhox, rho_el_final_down)**2 -1)* np.exp(-(tau/t()/1e-6)**2)
            Fid_noinit[ii]  = O() + 0.5*(2*qutip.fidelity(rhox, rho_el_final_noinit)**2 -1)* np.exp(-(tau/t()/1e-6)**2)

        Fid = np.r_[Fid_noinit, Fid_up, Fid_down]
        return Fid
Ejemplo n.º 29
0
def dis(state1,state2):
    (n,m)=state1.shape
    if state1.type is not 'ket' or state2.type is not 'ket':
        print("Error: One or more input to the distance function is not a ket." )
        p_0=0
    else:
        fid=qt.fidelity(state1,state2)
        p_0 = 1/n + (n-1)*fid/n
    return p_0
    def fidelity(self):
        """
        Calculates fidelity of current and goal state/unitary.

        Return:
            fid (float): fidelity measure

        """
        if self.is_unitary:
            assert self.current_unitary.shape == self.goal_unitary.shape
            fid = fidelity(
                Qobj(self.current_unitary) * self.basis_state,
                Qobj(self.goal_unitary) * self.basis_state)
        else:
            assert len(self.current_state) == len(self.goal_state)
            fid = fidelity(Qobj([self.current_state]), Qobj([self.goal_state]))

        return fid
def report_stats(result: OptimResult, N: int):
    result.stats.report()
    target_state = StandardGHZState(N).get_state_tensor()

    final_fidelity = qutip.fidelity(target_state, result.evo_full_final)**2
    print(f"final_fidelity: {final_fidelity:.5f}")

    print(f"Final gradient normal {result.grad_norm_final:.3e}")
    print(f"Terminated due to {result.termination_reason}")
Ejemplo n.º 32
0
q1 = qt.basis(2,0)
q2 = (qt.basis(2,1))#+qt.basis(2,0)).unit()
# L1 = 0.01 * qt.tensor(qt.qeye(5),qt.destroy(2),I)
# L2 = 0.01 * qt.tensor(qt.qeye(5),I,qt.destroy(2))
# lindblads = [L1,L2]

if __name__ == '__main__':
    # cav = thermal_state(5e9,20e-3)
    sim = Simulation(do_qt_mesolve, state=qt.tensor(cav, q1, q2),
                     fname='time_dependent.yaml')
    # sim.append_L(cavity_loss(10000, sim.w_c, 20e-3, sim.dims))
    # sim.append_L(thermal_in(10000, sim.w_c, 20e-3, sim.dims))
    # sim.append_L(relaxation(1,sim.dims,1))
    # sim.append_L(relaxation(1,sim.dims,2))
    # sim.append_L(decoherence(1e2,sim.dims,1))
    # sim.append_L(decoherence(1e2,sim.dims,2))
    states = sim.run_solver(nsteps=1000, steps=10000, tau=1e-9,
                            progress_bar=True)
    target = root_iSWAP * qt.tensor(q1, q2)
    fids1 = [qt.fidelity(target, state.ptrace([1,2])) for state in states]
    # print(np.max(fids1),np.argmax(fids1)*1e-9)
    # sim = Simulation(do_qt_mesolve, state=qt.tensor(q1, q2),
    #                  fname='2qtest.yaml')
    # states = sim.run_solver(nsteps=1000,steps=2500,tau=1e-7,progress_bar=True)
    # target = root_iSWAP * qt.tensor(q1, q2)
    # fids2 = [qt.fidelity(target, state) for state in states]
    # print(np.max(fids1),np.argmax(fids1)*1e-7)
    plt.plot(1e-7*np.arange(len(fids1)), fids1, 'r')
    #          # 1e-7*np.arange(len(fids2)), fids2, 'b')
    plt.show()
Ejemplo n.º 33
0
def random_benchmark(state, **kwargs):
    target = root_iSWAP * state#.ptrace([1,2])
    sim = Simulation(do_qt_mesolve, state=state, fname='2qtest.yaml')
    states = sim.run_solver(nsteps=1000, steps=1000, tau=1e-8,
                            progress_bar=True)
    return np.max([qt.fidelity(target, s) for s in states])
Ejemplo n.º 34
0
def random_purity_benchmark(state, **kwargs):
    target = root_iSWAP * state.ptrace([1,2])
    sim = Simulation(do_qt_mesolve, state=state, fname='time_dependent.yaml')
    states = sim.run_solver(nsteps=2000, steps=10000, tau=1e-7, rhs_reuse=True)
    print('Done a state')
    return qt.fidelity(target, states[-1].ptrace([1,2]))
Ejemplo n.º 35
0
 def fidelitycheck(self, out1, out2, rho0vec):
     fid = np.zeros(len(out1.states))
     for i, E in enumerate(out2.states):
         rhot = vector_to_operator(E * rho0vec)
         fid[i] = fidelity(out1.states[i], rhot)
     return fid
Ejemplo n.º 36
0
print(Best_A)
print(Best_B)

Sin_terms = np.sin(np.outer(time, Freqs))
Cos_terms = np.cos(np.outer(time, Freqs))
f_t = np.add(np.dot(Sin_terms, Best_A), np.dot(Cos_terms, Best_B))

plt.figure(1)
plt.plot(time, f_t)

def func_t(t, args):
    S_terms = np.sin(np.outer(t, args['w']))
    C_terms = np.cos(np.outer(t, args['w']))
    return np.add(np.dot(S_terms, args['A']), np.dot(C_terms, args['B']))

Hamiltonian = [H0, [H1, func_t]]

arguments = {'w':Freqs, 'A':Best_A, 'B':Best_B}

Evolution = qutip.mesolve(Hamiltonian, Rho_ini, time, [np.sqrt(0.5)*qutip.tensor(qutip.sigmax(),qutip.sigmax())], [], args = arguments)

fidelity = []

for i in range (len(time)) :
    fidelity.append(qutip.fidelity(Rho_fi, Evolution.states[i]))

plt.figure(2)
plt.plot(time, fidelity)

print(fidelity[-1])
Ejemplo n.º 37
0
 def Cost(x) :                                   #Function to be minimized using scipy.optimize
     a = x[0:Nc:1]                               #Returns 1 - Fidelity
     b = x[Nc:2*Nc:1]
     args = {'w' : np.hstack((w, Frequencies)), 'A' : np.hstack((a, Best_parameters_A)), 'B' : np.hstack((b, Best_parameters_B))}
     temp = qutip.mesolve(H, Initial_density, Time_steps, [np.sqrt(0.5)*qutip.tensor(qutip.sigmax(),qutip.sigmax())], [], args = args)
     return 1. - qutip.fidelity(Final_density, temp.states[len(Time_steps) - 1])