Ejemplo n.º 1
0
import misc_functions as misc
import radar_functions as rf
import custom_vars as cv
import pydda_functions as pdf

# - Reading data
radar_1 = pdf.read_uf(cv.filenames_uf[0])  # SR
radar_2 = pdf.read_uf(cv.filenames_uf[1])  # FCTH
radar_3 = pdf.read_uf(cv.filenames_uf[2])  # XPOL

# - Gridding based on radar_2 (FCTH)
print('-- Gridding radars --')
grid_1 = rf.grid_radar(radar_1,
                       fields=['DT', 'VT'],
                       for_multidop=False,
                       origin=(radar_2.latitude['data'][0],
                               radar_2.longitude['data'][0]),
                       xlim=cv.grid_xlim,
                       ylim=cv.grid_ylim,
                       grid_shape=cv.grid_shape)
grid_2 = rf.grid_radar(radar_2,
                       fields=['DT', 'VT'],
                       for_multidop=False,
                       origin=(radar_2.latitude['data'][0],
                               radar_2.longitude['data'][0]),
                       xlim=cv.grid_xlim,
                       ylim=cv.grid_ylim,
                       grid_shape=cv.grid_shape)
grid_3 = rf.grid_radar(radar_3,
                       fields=['DT', 'VT'],
                       for_multidop=False,
                       origin=(radar_2.latitude['data'][0],
Ejemplo n.º 2
0
@author: Camila Lopes ([email protected])
"""

import radar_functions as rf
import custom_vars as cv
import custom_cbars

radar = rf.read_radar(cv.filename)
# radar = pyart.io.read_uf(cv.filename)
radar = rf.calculate_radar_hid(radar, cv.sounding_name, "S")
grid = rf.grid_radar(radar,
                     fields=[
                         'corrected_reflectivity', 'FH', 'MW', 'MI',
                         'cross_correlation_ratio',
                         'differential_reflectivity',
                         'specific_differential_phase'
                     ],
                     origin=(radar.latitude['data'][0],
                             radar.longitude['data'][0]),
                     xlim=cv.grid_xlim,
                     ylim=cv.grid_ylim,
                     grid_shape=cv.grid_shape)
grid.fields['specific_differential_phase']['units'] = r'$\degree\  km^{-1}$'
grid.fields['differential_reflectivity']['units'] = 'dB'
if cv.pt_br:
    grid.fields['cross_correlation_ratio']['units'] = 'adimensional'
    grid.fields['corrected_reflectivity']['standard_name'] = (
        "Refletividade Corrigida")
    grid.fields['FH']['standard_name'] = ("IDs de Hidrometeoros")
    grid.fields['MW']['standard_name'] = ("Massa de Água Líquida")
    grid.fields['MI']['standard_name'] = ("Massa de Gelo")
    grid.fields['cross_correlation_ratio']['standard_name'] = (
Ejemplo n.º 3
0
):
    """
    """

    # Reading merged radar + converting to xarray
    grid = misc.open_object(filepath_m)
    xgrid = grid.to_xarray().squeeze()
    del grid

    # Reading radar + gridding + calculating mass + converting to xarray
    radar = rf.read_radar(filepath_r)
    radar = rf.calculate_radar_hid(radar, sounding)
    gradar = rf.grid_radar(
        radar,
        xlim=cv.grid_xlim,
        ylim=cv.grid_ylim,
        fields=["MI"],
        grid_shape=cv.grid_shape,
    )
    xgradar = gradar.to_xarray().squeeze()
    del radar, gradar

    # Merging files
    xgrid = xgrid.assign({"MI": xgradar.MI})
    xgrid = xgrid.swap_dims({"x": "lon", "y": "lat"})
    del xgradar

    # Selecting:
    # - Area of interest
    # - Z >= 40 dBZ
    xgrid = xgrid.where((xgrid.lat > ylim_aoi[0])
Ejemplo n.º 4
0
    return im


def open_select_im(
    filepath_r, xlim_aoi, ylim_aoi, case, zero_height=4, forty_height=6,
):
    """
    """

    # Reading radar + gridding + calculating mass + converting to xarray
    radar = rf.read_radar(filepath_r)
    radar = rf.calculate_radar_mw_mi(radar)
    gradar = rf.grid_radar(
        radar,
        xlim=(-200000.0, 10000.0),
        ylim=(-10000.0, 200000.0),
        fields=["corrected_reflectivity", "MI"],
        grid_shape=(20, 211, 211),
    )
    xgrid = gradar.to_xarray().squeeze()
    del radar, gradar

    # Selecting:
    # - Area of interest
    # - Z >= 40 dBZ
    xgrid = xgrid.where(
        (xgrid.lat > ylim_aoi[0])
        & (xgrid.lat < ylim_aoi[1])
        & (xgrid.lon > xlim_aoi[0])
        & (xgrid.lon < xlim_aoi[1])
        & (xgrid.corrected_reflectivity >= 35)