Ejemplo n.º 1
0
def test_visualTestBaseline(plot=True, *args, **kwargs):

    s = load_spec(getTestFile("CO_Tgas1500K_mole_fraction0.01.spec"),
                  binary=True)
    s.update('radiance_noslit', verbose=False)
    s.apply_slit(0.1)
    s = Radiance_noslit(s)
    assert s.units['radiance'] == 'mW/cm2/sr/nm'

    s2 = sub_baseline(s, 2e-4, -2e-4, name='sub_arb_baseline')
    if plot:
        plot_diff(s, s2)
Ejemplo n.º 2
0
def test_multiplyAndAddition(*args, **kwargs):

    s = load_spec(getTestFile("CO_Tgas1500K_mole_fraction0.01.spec"),
                  binary=True)
    s.update('radiance_noslit', verbose=False)
    s.apply_slit(0.1)
    s = Radiance(s)
    assert s.units['radiance'] == 'mW/cm2/sr/nm'

    s_bis = add_constant(s, 1, 'mW/cm2/sr/nm')
    w, Idiff = get_diff(s_bis, s, 'radiance')
    test = Idiff[1] - 1
    assert np.all(test < 1e-10)

    s_ter = multiply(multiply(s, 50), 1 / 50)
    #    plot_diff(s_ter, s_5)
    diff = get_diff(s_ter, s, 'radiance')
    ratio = abs(np.trapz(diff[1], x=diff[0]) / s.get_integral('radiance'))
    assert ratio < 1e-10
Ejemplo n.º 3
0
def test_offset(plot=True):

    s = load_spec(getTestFile("CO_Tgas1500K_mole_fraction0.01.spec"),
                  binary=True)
    s.update('radiance_noslit', verbose=False)
    s.apply_slit(0.1)

    s2 = offset(s, 10, 'nm', name='offset_10nm')
    if plot:
        plot_diff(s, s2)
    assert np.allclose(s2.get_wavelength(which='convoluted'),
                       s.get_wavelength(which='convoluted') + 10)
    assert np.allclose(s2.get_wavelength(which='non_convoluted'),
                       s.get_wavelength(which='non_convoluted') + 10)

    # Test inplace version
    s.offset(10, 'nm')
    assert np.allclose(s2.get_wavelength(which='convoluted'),
                       s.get_wavelength(which='convoluted'))
Ejemplo n.º 4
0
wmin = 2000
wmax = 2400
dv = 0.002
T = 3000.0  #K
p = 0.1  #bar
broadening_max_width = 5  # lineshape broadening width, ext

spectra_default = {}
spectra_DLM = {}
spectra_DLM_opt = {}

Nlines = [101, 1001, 10017, 100725, 1813040, 1813040]
plt.ion()

for N in Nlines:
    spectra_default[N] = load_spec(
        '../spec/spectra_default_[{0}].spec'.format(N), binary=True)
    spectra_DLM_opt[N] = load_spec(
        '../spec/spectra_DLM_opt[{0}].spec'.format(N), binary=True)

# %% Plot last spectra (opt)

fig, [ax0, ax1] = plot_diff(spectra_default[N], spectra_DLM_opt[N], 'abscoeff')

ax0.set_ylim((0, 0.5))
ax1.set_ylim((-0.005, 0.005))

axins = ax0.inset_axes([0.06, 0.3, 0.3, 0.4])
axins.ticklabel_format(useOffset=False, axis='x')
axins.tick_params(which='major', labelsize=14)
axins.get_yaxis().set_visible(False)
axins.plot(*spectra_default[N].get('abscoeff', wunit='cm-1'), color='k', lw=2)
Ejemplo n.º 5
0
#%% Calculate Reference 

#%%
spectra_default = {}      # calculated with Whiting's Voigt approximatino
spectra_convolve = {}     # calculated  with no approximatino

##broadening_max_widths = [0.05, 0.1, 1, 5, 10, 15, 20, 25, 50]
broadening_max_widths = [0.1,50]
Nlines = 1e4

#%% Calculate normal

for width in broadening_max_widths:
        
    spectra_default[width] = load_spec('../spec_fig78/spectra_default[{0}].spec'.format(width), binary=True)
    spectra_convolve[width] = load_spec('../spec_fig78/spectra_convolve[{0}].spec'.format(width), binary=True)

spectra_DLM_opt = load_spec('../spec_fig78/spectra_DLM_opt.spec')


plt.ion()

##fig, [ax0, ax1] = plot_diff(spectra_default[broadening_max_widths[1]], spectra_DLM_opt, 'abscoeff', figsize=(10,6))
fig, [ax0, ax1] = plot_diff(spectra_default[broadening_max_widths[1]], spectra_DLM_opt, 'abscoeff', figsize=(10,6))
                           
ax0.set_ylim((0, 0.9))
ax1.set_ylim((-0.0025, 0.0025))

from mpl_toolkits.axes_grid1.inset_locator import inset_axes
Ejemplo n.º 6
0
def test_validation_vs_specair(rtol=1e-2,
                               verbose=True,
                               plot=False,
                               *args,
                               **kwargs):
    ''' Test RADIS output on CO IR bands against SPECAIR

    Test is only performed on integrals of absorption coefficient

    RADIS doesnt actually match Specair exactly, but this is due to line intensity
    differences (Specair has no rovibrational specific intensities) rather than 
    differences in populations calculations, as evidenced by the partition functions
    comparison in the RADIS presentation article. 

    '''

    setup_test_line_databases()  # add HITRAN-CO-TEST in ~/.radis if not there

    # %% Specair calculation
    # -----------

    specair_300_300 = load_spec(getValidationCase(
        join('test_validation_vs_specair_noneqCO_data',
             'specair_CO_IR_Tvib300_Trot300.spec')),
                                binary=True)
    specair_300_2000 = load_spec(getValidationCase(
        join('test_validation_vs_specair_noneqCO_data',
             'specair_CO_IR_Tvib300_Trot2000.spec')),
                                 binary=True)
    specair_2000_300 = load_spec(getValidationCase(
        join('test_validation_vs_specair_noneqCO_data',
             'specair_CO_IR_Tvib2000_Trot300.spec')),
                                 binary=True)

    article_version = False  # just for the article

    # %% Compare with RADIS
    # ----------

    wstep = 0.002
    pl = SpectrumFactory(
        wavelength_min=4400,
        wavelength_max=4900,
        mole_fraction=1,
        pressure=0.01,  # bar
        path_length=1,  # we dont care for abscoeff anyway
        parallel=False,
        cutoff=1e-30,
        wstep=wstep,
        isotope=1,  # '1,2,3',
        medium='vacuum')  # 0.2)
    pl.warnings['MissingSelfBroadeningWarning'] = 'ignore'

    if article_version:
        pl.load_databank('HITEMP-CO-DUNHAM')
    else:
        pl.load_databank('HITRAN-CO-TEST')
        # Available on all systems, convenient for fast testing, but you
        # will be missing some small lines for T ~ 2000 K .
        print(
            'Using HITRAN: small lines will be missing at T ~ 2000K. Use HITEMP if you want them'
        )

    s_300_300 = pl.eq_spectrum(300, name='RADIS')

    s_2000_300 = pl.non_eq_spectrum(Tvib=2000,
                                    Trot=300,
                                    Ttrans=300,
                                    name='RADIS')

    s_300_2000 = pl.non_eq_spectrum(Tvib=300,
                                    Trot=2000,
                                    Ttrans=2000,
                                    name='RADIS')

    # %% Test

    # Compare integrals

    b1 = np.isclose(specair_300_300.get_integral('abscoeff'),
                    s_300_300.get_integral('abscoeff'),
                    rtol=rtol)
    b1 *= np.isclose(specair_2000_300.get_integral('abscoeff'),
                     s_2000_300.get_integral('abscoeff'),
                     rtol=rtol)
    b1 *= np.isclose(specair_300_2000.get_integral('abscoeff'),
                     s_300_2000.get_integral('abscoeff'),
                     rtol=rtol)

    # Compare partition functions to hardcoded values
    b2 = np.isclose(s_2000_300.lines.Q, 139, atol=1)  # Specair: 139
    b2 *= np.isclose(s_300_2000.lines.Q, 727, atol=1)  # Specair: 727

    if verbose:
        printm(
            '>>> comparing RADIS vs SPECAIR on CO: integrals of abscoeff is are close'
            + ' to within {0:.1f}%: {1} ({2:.1f}%, {3:.1f}%, {4:.1f}%)'.format(
                rtol * 100,
                bool(b1),
                abs(
                    specair_300_300.get_integral('abscoeff') /
                    s_300_300.get_integral('abscoeff') - 1) * 100,
                abs(
                    specair_2000_300.get_integral('abscoeff') /
                    s_2000_300.get_integral('abscoeff') - 1) * 100,
                abs(
                    specair_300_2000.get_integral('abscoeff') /
                    s_300_2000.get_integral('abscoeff') - 1) * 100,
            ))
        printm('>>> comparing RADIS vs SPECAIR on CO: partition functions ' +
               'are equal to round error: {0}'.format(bool(b2)))

    if plot:
        plot_diff(
            specair_300_300,
            s_300_300,
            title=r'T$_\mathregular{vib}$ 300 K, T$_\mathregular{rot}$ 300 K',
            diff_window=int(
                0.02 // wstep
            ),  # compensate for small shifts in both codes. we're comparing intensities here.
            lw_multiplier=1,  #0.75, 
            wunit='nm_vac',
            plot_medium=True,
        )
        plt.xlim((4500, 4900))
        if article_version:
            plt.savefig(
                'out/test_validation_vs_specair_noneqCO_Tvib300_Trot300.png')
            plt.savefig(
                'out/test_validation_vs_specair_noneqCO_Tvib300_Trot300.pdf')

        plot_diff(
            specair_2000_300,
            s_2000_300,
            title=r'T$_\mathregular{vib}$ 2000 K, T$_\mathregular{rot}$ 300 K',
            diff_window=int(
                0.02 // wstep
            ),  # compensate for small shifts in both codes. we're comparing intensities here.
            lw_multiplier=1,  #0.75, 
            wunit='nm_vac',
            plot_medium=True,
        )
        plt.xlim((4500, 4900))
        if article_version:
            plt.savefig(
                'out/test_validation_vs_specair_noneqCO_Tvib2000_Trot300.png')
            plt.savefig(
                'out/test_validation_vs_specair_noneqCO_Tvib2000_Trot300.pdf')

        plot_diff(
            specair_300_2000,
            s_300_2000,
            title=r'T$_\mathregular{vib}$ 300 K, T$_\mathregular{rot}$ 2000 K',
            diff_window=int(
                0.02 // wstep
            ),  # compensate for small shifts in both codes. we're comparing intensities here.
            lw_multiplier=1,  #0.75, 
            wunit='nm_vac',
            plot_medium=True,
        )
        plt.xlim((4500, 4900))
        if article_version:
            plt.savefig(
                'out/test_validation_vs_specair_noneqCO_Tvib300_Trot2000.png')
            plt.savefig(
                'out/test_validation_vs_specair_noneqCO_Tvib300_Trot2000.pdf')

    return bool(b1 * b2)
Ejemplo n.º 7
0
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 31 23:45:17 2018

@author: erwan

See Issue #5
"""

from radis import load_spec, MergeSlabs
from radis.misc.arrays import count_nans

s1 = load_spec('cruden_2611K_1.spec')
s2 = load_spec('cruden_2611K_2.spec')
assert count_nans(s1._q['emissivity_noslit']) == 0
assert count_nans(s2._q['emissivity_noslit']) == 0

s = MergeSlabs(s1, s2, resample_wavespace='full', out_of_bounds='transparent')

assert count_nans(s._q['emissivity_noslit']) == 0
Ejemplo n.º 8
0
    return r'$\mathregular{{{m:s}\cdot 10^{{{e:d}}} }}$'.format(m=m, e=int(e))


def str_fmt(x, n=0):
    " Format x into nice Latex rounding to n"
    #    power = int(np.log10(round_to_n(x, 0)))
    #    f_SF = round_to_n(x, n) * pow(10, -power)
    #    return as_si(f_SF, power)
    return as_si(x, n)


#%%

s_ref = load_spec('../spec/' + case + '.spec', binary=True)
s_opt = load_spec('../spec/' + case + '_optim.spec', binary=True)
s_dlm = load_spec('../spec/h2o_2200K_1000-2000cm-1_2200K_DLM.spec',
                  binary=True)

s_ref.update()
s_opt.update()

# compare times
t_ref = s_ref.conditions['calculation_time']
t_opt = s_opt.conditions['calculation_time']
t_dlm = s_dlm.conditions['calculation_time']
#%%
plt.ion()

#%%

_, [ax0, ax1] = plot_diff(
    s_ref,
Ejemplo n.º 9
0
                       s.get_wavelength(which='convoluted'))


if __name__ == '__main__':

    from radis import load_spec, get_diff, plot_diff
    from radis.test.utils import getTestFile
    import numpy as np
    import pytest

    test_multiplyAndAddition()
    test_offset()

    # An implement of Spectrum Algebra
    # Reload:
    s = load_spec(getTestFile('CO_Tgas1500K_mole_fraction0.01.spec'))
    s.update()

    # Test addition of Spectra
    s.plot(lw=2, nfig='Merge: s//s')
    (s // s).plot(nfig='same')

    # Test substraction of Spectra
    s_tr = Transmittance_noslit(s)
    assert (s_tr - 1.0 * s_tr).get_integral('transmittance_noslit') == 0

    # TODO: add test
    # @EP: the test fails at the moment because multiply only works with radiance,
    # and MergeSlabs only works with non convoluted quantities
    # Do we want that? Up for discussion...