Ejemplo n.º 1
0
    def _complexity(self, filepaths):
        all_complexity = 0
        for filepath in filepaths:
            file_obj = open(join(self.repo_dir_path, filepath))
            results = sorted_results(cc_visit(file_obj.read()))
            complexities = [i.complexity for i in results]
            complexity = sum(complexities) / (len(complexities) or 1)
            all_complexity += complexity

        return all_complexity, cc_rank(all_complexity)
Ejemplo n.º 2
0
def radon_test(f):
    filename = 'a1/a1_solution_' + f + '.py'
    with open(filename) as file:
        source = file.read()
        cv = ComplexityVisitor.from_code(source)
        res = sorted_results(cv.functions + cv.classes, order=LINES)
        output = {}
        for r in res:
            # print(f'Function: {r.name}, CC: {r.complexity}')
            output['CC'] = r.complexity

        res = analyze(source)
        # pprint(res)

        basic = {'loc': res[0],
                 'lloc': res[1],
                 'sloc': res[2],
                 'comments': res[3],
                 'multi': res[4],
                 'blank': res[5],
                 'single_comment': res[6]}
        output['Lines'] = basic

        config = Config(min='A',
                        max='F',
                        exclude=None,
                        ignore=None,
                        no_assert=False,
                        show_closures=False,
                        order=LINES)

        ch = CCHarvester([filename], config)
        res = ch.results
        x = json.loads(ch.as_json())
        # pprint(x)

        res = h_visit(source)

        hals = {'h1': res[0],
                'h2': res[1],
                'N1': res[2],
                'N2': res[3],
                'vocabulary': res[4],
                'length': res[5],
                'calculated_length': res[6],
                'volume': res[7],
                'difficulty': res[8],
                'effort': res[9],
                'time': res[10],
                'bugs': res[11]}

    output['Halstead'] = hals
    pprint({f: output})
Ejemplo n.º 3
0
    def analyse(self):
        output = {}
        cv = ComplexityVisitor.from_code(self._source)
        res = sorted_results(cv.functions + cv.classes, order=LINES)
        # should be one result, since giving one function
        # if len(res) > 1:
        #     raise ValueError('Complexity Analysis returned multiple results')
        output['cc'] = res[0].complexity

        res = analyze(self._source)
        lines_comments = dict(res._asdict())
        output.update(lines_comments)

        res = h_visit(self._source)
        hals = dict(res._asdict())
        output.update(hals)

        self._res = output
Ejemplo n.º 4
0
def analyze_cc(paths, exclude, min, max, order_function):
    '''Analyze the files located under `paths`.

    :param paths: A list of paths to analyze.
    :param exclude: A comma-separated string of fnmatch patterns.
    :param min: The minimum rank to output.
    :param max: The maximum rank to output.
    :param order_function: Can be `SCORE`, `LINES` or `ALPHA`, to sort the
        results respectively by CC score, line number or name.'''
    for name in iter_filenames(paths, exclude):
        with open(name) as fobj:
            try:
                results = sorted_results(cc_visit(fobj.read()), order_function)
                yield name, list(_filter_by_rank(results, min, max))
            except Exception as e:
                log(name, indent=1)
                log_error(e, indent=1)
                continue
Ejemplo n.º 5
0
def cc(min='A',
       max='F',
       show_complexity=False,
       average=False,
       exclude=None,
       order='SCORE',
       *paths):
    '''Analyze the given Python modules and compute Cyclomatic
    Complexity (CC).

    The output can be filtered using the *min* and *max* flags. In addition
    to that, by default complexity score is not displayed.

    :param min: The minimum complexity to display (default to A).
    :param max: The maximum complexity to display (default to F).
    :param show_complexity: Whether or not to show the actual complexity
        score together with the A-F rank. Default to False.
    :param average: If True, at the end of the analysis display the average
        complexity. Default to False.
    :param paths: The modules or packages to analyze.
    '''
    min = min.upper()
    max = max.upper()
    average_cc = .0
    analyzed = 0
    order_function = getattr(cc_mod, order.upper(), getattr(cc_mod, 'SCORE'))
    for name in iter_filenames(paths, exclude or []):
        with open(name) as fobj:
            try:
                results = sorted_results(cc_visit(fobj.read()), order_function)
            except Exception as e:
                log('{0}\n{1}ERROR: {2}', name, ' ' * 4, str(e))
                continue
        cc, blocks = _print_cc_results(name, results, min, max,
                                       show_complexity)
        average_cc += cc
        analyzed += blocks

    if average and analyzed:
        cc = average_cc / analyzed
        ranked_cc = cc_rank(cc)
        log('\n{0} blocks (classes, functions, methods) analyzed.', analyzed)
        log('Average complexity: {0}{1} ({2}){3}', RANKS_COLORS[ranked_cc],
            ranked_cc, cc, RESET)
Ejemplo n.º 6
0
def analyze_cc(paths, exclude, ignore, order_function, no_assert):
    """Analyze the files located under `paths`.

    :param paths: A list of paths to analyze.
    :param exclude: A comma-separated string of fnmatch patterns.
    :param ignore: A comma-separated string of patterns to ignore.
    :param min: The minimum rank to output.
    :param max: The maximum rank to output.
    :param order_function: Can be `SCORE`, `LINES` or `ALPHA`, to sort the
        results respectively by CC score, line number or name.
    :param no_assert: If `True` assert statements will not be counted."""
    for name in iter_filenames(paths, exclude, ignore):
        with open(name) as fobj:
            try:
                results = sorted_results(cc_visit(fobj.read(), no_assert=no_assert), order_function)
                yield name, results
            except Exception as e:
                log(name)
                log_error(e, indent=1)
                continue
Ejemplo n.º 7
0
def analyze_cc(paths, exclude, ignore, order_function, no_assert):
    '''Analyze the files located under `paths`.

    :param paths: A list of paths to analyze.
    :param exclude: A comma-separated string of fnmatch patterns.
    :param ignore: A comma-separated string of patterns to ignore.
    :param min: The minimum rank to output.
    :param max: The maximum rank to output.
    :param order_function: Can be `SCORE`, `LINES` or `ALPHA`, to sort the
        results respectively by CC score, line number or name.
    :param no_assert: If `True` assert statements will not be counted.'''
    for name in iter_filenames(paths, exclude, ignore):
        with open(name) as fobj:
            try:
                results = sorted_results(
                    cc_visit(fobj.read(), no_assert=no_assert), order_function)
                yield name, results
            except Exception as e:
                log(name)
                log_error(e, indent=1)
                continue
Ejemplo n.º 8
0
def getBufferErrors(sourceCode):
    """Provides a list of warnings/errors for the given source code"""
    sourceCode += '\n'

    # First, compile into an AST and handle syntax errors.
    try:
        tree = compile(sourceCode, "<string>", "exec", PyCF_ONLY_AST)
    except SyntaxError as value:
        # If there's an encoding problem with the file, the text is None.
        if value.text is None:
            return {}, []
        return {value.lineno: [value.args[0]]}, []
    except (ValueError, TypeError) as value:
        # ValueError may happened in case of invalid \x escape character
        # E.g. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=674797
        # TypeError may happened in case of null characters in a file
        # E.g. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=674796
        msg = str(value)
        if msg == "":
            return {-1: ["Could not compile buffer: unknown error"]}, []
        return {-1: ["Could not compile buffer: " + msg]}, []

    # Okay, it's syntactically valid.  Now check it.
    check = Checker(tree, "<string>")
    results = {}
    lines = sourceCode.splitlines()
    for warning in check.messages:
        if isinstance(warning.lineno, int):
            lineno = warning.lineno
        else:
            # By some reasons I see ast NAME node here (pyflakes 0.7.3)
            lineno = warning.lineno.lineno
        if not IGNORE_REGEXP.search(lines[lineno - 1]):
            if lineno in results:
                results[lineno].append(warning.message % warning.message_args)
            else:
                results[lineno] = [warning.message % warning.message_args]

    # Radon: CC complexity as the second value
    return results, sorted_results(cc_visit_ast(tree))
Ejemplo n.º 9
0
def cc(min='A', max='F', show_complexity=False, average=False,
       exclude=None, order='SCORE', *paths):
    '''Analyze the given Python modules and compute Cyclomatic
    Complexity (CC).

    The output can be filtered using the *min* and *max* flags. In addition
    to that, by default complexity score is not displayed.

    :param min: The minimum complexity to display (default to A).
    :param max: The maximum complexity to display (default to F).
    :param show_complexity: Whether or not to show the actual complexity
        score together with the A-F rank. Default to False.
    :param average: If True, at the end of the analysis display the average
        complexity. Default to False.
    :param paths: The modules or packages to analyze.
    '''
    min = min.upper()
    max = max.upper()
    average_cc = .0
    analyzed = 0
    order_function = getattr(cc_mod, order.upper(), getattr(cc_mod, 'SCORE'))
    for name in iter_filenames(paths, exclude or []):
        with open(name) as fobj:
            try:
                results = sorted_results(cc_visit(fobj.read()), order_function)
            except Exception as e:
                log('{0}\n{1}ERROR: {2}', name, ' ' * 4, str(e))
                continue
        cc, blocks = _print_cc_results(name, results, min, max,
                                       show_complexity)
        average_cc += cc
        analyzed += blocks

    if average and analyzed:
        cc = average_cc / analyzed
        ranked_cc = cc_rank(cc)
        log('\n{0} blocks (classes, functions, methods) analyzed.', analyzed)
        log('Average complexity: {0}{1} ({2}){3}', RANKS_COLORS[ranked_cc],
            ranked_cc, cc, RESET)
Ejemplo n.º 10
0
def cc(min='A', max='F', show_complexity=False, average=False,
       exclude=None, order='SCORE', json=False, *paths):
    '''Analyze the given Python modules and compute Cyclomatic
    Complexity (CC).

    The output can be filtered using the *min* and *max* flags. In addition
    to that, by default complexity score is not displayed.

    :param min: The minimum complexity to display (default to A).
    :param max: The maximum complexity to display (default to F).
    :param show_complexity: Whether or not to show the actual complexity
        score together with the A-F rank. Default to False.
    :param average: If True, at the end of the analysis display the average
        complexity. Default to False.
    :param paths: The modules or packages to analyze.
    '''
    if json:
        return cc_json(*paths)
    min = min.upper()
    max = max.upper()
    average_cc = .0
    analyzed = 0
    order_function = getattr(cc_mod, order.upper(), getattr(cc_mod, 'SCORE'))
    cc_data = analyze_cc(*paths)
    for name, results in cc_data.iteritems():
        results = sorted_results(results, order_function)
        cc, blocks = _print_cc_results(name, results, min, max,
                                       show_complexity)
        average_cc += cc
        analyzed += blocks

    if average and analyzed:
        cc = average_cc / analyzed
        ranked_cc = cc_rank(cc)
        log('\n{0} blocks (classes, functions, methods) analyzed.', analyzed)
        log('Average complexity: {0}{1} ({2}){3}', RANKS_COLORS[ranked_cc],
            ranked_cc, cc, RESET)
Ejemplo n.º 11
0
        # get cc blocks
        blocks = cc_visit(source)

        # get MI score
        mi = mi_visit(source, True)
        mi_dict[mi] = filename

        # get raw metrics
        raw = analyze(source)
        hal_vol, complexity, logic_lines, com_lines = mi_parameters(source)
        param_dict[complexity] = (complexity, filename, hal_vol, logic_lines,
                                  com_lines)

        # get metrics for each file
        file_complexity = sorted_results(blocks)
        try:
            file_methods.append(re.findall('(?<=.Function\(name=\')[^\']'
                                           '*(?=\')', str(file_complexity)))

            file_complexities.append(re.findall('(?<=.complexity=)\d*',
                                                str(file_complexity)))
        except IndexError:
            continue

        mask = np.arange(len(file_methods[0]))
        for complexity, method in zip(file_complexities, file_methods):
            try:
                for i in mask:
                    methods_dictionary[int(complexity[i])] = method[i]
                methods_complexity_print(filename, methods_dictionary)
Ejemplo n.º 12
0
 def gobble(self, fobj):
     '''Analyze the content of the file object.'''
     r = cc_visit(fobj.read(), no_assert=self.config.no_assert)
     if self.config.show_closures:
         r = add_inner_blocks(r)
     return sorted_results(r, order=self.config.order)
Ejemplo n.º 13
0
 def gobble(self, fobj):
     '''Analyze the content of the file object.'''
     r = cc_visit(fobj.read(), no_assert=self.config.no_assert)
     if self.config.show_closures:
         r = add_inner_blocks(r)
     return sorted_results(r, order=self.config.order)
Ejemplo n.º 14
0
 def gobble(self, fobj):
     '''Analyze the content of the file object.'''
     r = cc_visit(fobj.read(), no_assert=self.config.no_assert)
     return sorted_results(r, order=self.config.order)
Ejemplo n.º 15
0
 def gobble(self, fobj):
     '''Analyze the content of the file object.'''
     r = cc_visit(fobj.read(), no_assert=self.config.no_assert)
     return sorted_results(r, order=self.config.order)