Ejemplo n.º 1
0
def experiment(variant):
    #expl_env = carla_env.CarlaObsDictEnv(args=variant['env_args'])
    import gym
    import d4rl.carla
    expl_env = gym.make('carla-lane-dict-v0')

    eval_env = expl_env
    #num_channels, img_width, img_height = eval_env._wrapped_env.image_shape
    num_channels, img_width, img_height = eval_env.image_shape
    # num_channels = 3
    action_dim = int(np.prod(eval_env.action_space.shape))
    # obs_dim = 11

    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    observation_key = 'image'

    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])

    expl_path_collector = CustomObsDictPathCollector(
        expl_env,
        observation_key=observation_key,
    )

    observation_key = 'image'
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )
    load_hdf5(expl_env, replay_buffer)
    #load_buffer(buffer_path=variant['buffer'], replay_buffer=replay_buffer)
    # import ipdb; ipdb.set_trace()

    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         behavior_policy=None,
                         **variant['trainer_kwargs'])
    variant['algo_kwargs']['max_path_length'] = expl_env._max_episode_steps
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        eval_both=True,
        batch_rl=True,
        **variant['algorithm_kwargs'])

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
Ejemplo n.º 2
0
def experiment(variant):
    expl_env = gym.make('carla-lane-dict-v0')

    eval_env = expl_env
    num_channels, img_width, img_height = eval_env.image_shape
    num_channels = 3

    action_dim = int(np.prod(eval_env.action_space.shape))
    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (
            action_dim + qf_cnn.conv_output_flat_size
    )
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (
            action_dim + target_qf_cnn.conv_output_flat_size
    )

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(
        policy_obs_processor,
        policy_cnn.conv_output_flat_size,
        action_dim,
        **variant['policy_kwargs']
    )

    cnn_vae_params = variant['cnn_vae_params']
    cnn_vae_params['conv_args'].update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
    )
    vae_policy = ConvVAEPolicy(
        representation_size=cnn_vae_params['representation_size'],
        architecture=cnn_vae_params,
        action_dim=action_dim,
        input_channels=3,
        imsize=img_width,
    )

    observation_key = 'image'
    eval_path_collector = CustomObsDictPathCollector(
        eval_env,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs']
    )

    vae_eval_path_collector = CustomObsDictPathCollector(
        eval_env,
        # eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs']
    )

    #with open(variant['buffer'], 'rb') as f:
    #    replay_buffer = pickle.load(f)
    observation_key = 'image'
    replay_buffer = ObsDictReplayBuffer(
        variant['replay_buffer_size'],
        expl_env,
        observation_key=observation_key,
    )
    load_hdf5(expl_env, replay_buffer)


    trainer = BEARTrainer(
        env=eval_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        vae=vae_policy,
        **variant['trainer_kwargs']
    )

    expl_path_collector = ObsDictPathCollector(
        expl_env,
        policy,
        observation_key=observation_key,
        **variant['expl_path_collector_kwargs']
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        vae_evaluation_data_collector=vae_eval_path_collector,
        replay_buffer=replay_buffer,
        q_learning_alg=True,
        batch_rl=variant['batch_rl'],
        **variant['algo_kwargs']
    )

    video_func = VideoSaveFunctionBullet(variant)
    # dump_buffer_func = BufferSaveFunction(variant)

    algorithm.post_train_funcs.append(video_func)
    # algorithm.post_train_funcs.append(dump_buffer_func)

    algorithm.to(ptu.device)
    algorithm.train()
Ejemplo n.º 3
0
def experiment(variant):
    expl_env = roboverse.make(variant['env'],
                              gui=False,
                              randomize=True,
                              observation_mode=variant['obs'],
                              reward_type='shaped',
                              transpose_image=True)
    eval_env = expl_env
    img_width, img_height = eval_env.image_shape
    num_channels = 3
    action_dim = int(np.prod(eval_env.action_space.shape))
    # obs_dim = 11

    cnn_params = variant['cnn_params']
    cnn_params.update(
        input_width=img_width,
        input_height=img_height,
        input_channels=num_channels,
        added_fc_input_size=0,
        output_conv_channels=True,
        output_size=None,
    )

    qf_cnn = CNN(**cnn_params)
    qf_obs_processor = nn.Sequential(
        qf_cnn,
        Flatten(),
    )

    qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    qf_kwargs['obs_processor'] = qf_obs_processor
    qf_kwargs['output_size'] = 1
    qf_kwargs['input_size'] = (action_dim + qf_cnn.conv_output_flat_size)
    qf1 = MlpQfWithObsProcessor(**qf_kwargs)
    qf2 = MlpQfWithObsProcessor(**qf_kwargs)

    target_qf_cnn = CNN(**cnn_params)
    target_qf_obs_processor = nn.Sequential(
        target_qf_cnn,
        Flatten(),
    )

    target_qf_kwargs = copy.deepcopy(variant['qf_kwargs'])
    target_qf_kwargs['obs_processor'] = target_qf_obs_processor
    target_qf_kwargs['output_size'] = 1
    target_qf_kwargs['input_size'] = (action_dim +
                                      target_qf_cnn.conv_output_flat_size)

    target_qf1 = MlpQfWithObsProcessor(**target_qf_kwargs)
    target_qf2 = MlpQfWithObsProcessor(**target_qf_kwargs)

    action_dim = int(np.prod(eval_env.action_space.shape))
    policy_cnn = CNN(**cnn_params)
    policy_obs_processor = nn.Sequential(
        policy_cnn,
        Flatten(),
    )
    policy = TanhGaussianPolicyAdapter(policy_obs_processor,
                                       policy_cnn.conv_output_flat_size,
                                       action_dim, **variant['policy_kwargs'])

    eval_policy = MakeDeterministic(policy)
    observation_key = 'image'

    eval_path_collector = ObsDictPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        **variant['eval_path_collector_kwargs'])

    expl_path_collector = CustomObsDictPathCollector(
        expl_env,
        observation_key=observation_key,
    )

    with open(variant['buffer'], 'rb') as f:
        replay_buffer = pickle.load(f)

    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         behavior_policy=None,
                         **variant['trainer_kwargs'])
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        eval_both=True,
        batch_rl=variant['load_buffer'],
        **variant['algorithm_kwargs'])

    video_func = VideoSaveFunctionBullet(variant)
    algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()