def experiment(variant):
    from railrl.core import logger
    import railrl.torch.pytorch_util as ptu
    beta = variant["beta"]
    representation_size = variant["representation_size"]
    train_data, test_data, info = generate_vae_dataset(
        **variant['get_data_kwargs'])
    logger.save_extra_data(info)
    logger.get_snapshot_dir()
    if 'beta_schedule_kwargs' in variant:
        beta_schedule = PiecewiseLinearSchedule(
            **variant['beta_schedule_kwargs'])
    else:
        beta_schedule = None
    m = ConvVAE(representation_size, input_channels=3)
    if ptu.gpu_enabled():
        m.to(ptu.device)
        gpu_id = variant.get("gpu_id", None)
        if gpu_id is not None:
            ptu.set_device(gpu_id)
    t = ConvVAETrainer(train_data,
                       test_data,
                       m,
                       beta=beta,
                       beta_schedule=beta_schedule,
                       **variant['algo_kwargs'])
    save_period = variant['save_period']
    for epoch in range(variant['num_epochs']):
        should_save_imgs = (epoch % save_period == 0)
        t.train_epoch(epoch)
        t.test_epoch(epoch,
                     save_reconstruction=should_save_imgs,
                     save_scatterplot=should_save_imgs)
        if should_save_imgs:
            t.dump_samples(epoch)
Ejemplo n.º 2
0
def experiment(variant):
    from railrl.core import logger
    import railrl.torch.pytorch_util as ptu
    beta = variant["beta"]
    representation_size = variant["representation_size"]
    train_data, test_data, info = get_data(**variant['get_data_kwargs'])
    logger.save_extra_data(info)
    logger.get_snapshot_dir()
    beta_schedule = PiecewiseLinearSchedule(**variant['beta_schedule_kwargs'])
    m = ConvVAE(representation_size, input_channels=3)
    if ptu.gpu_enabled():
        m.to(ptu.device)
    t = ConvVAETrainer(train_data,
                       test_data,
                       m,
                       beta=beta,
                       beta_schedule=beta_schedule,
                       **variant['algo_kwargs'])
    for epoch in range(variant['num_epochs']):
        t.train_epoch(epoch)
        t.test_epoch(epoch)
        t.dump_samples(epoch)