import pandas as pd time = 300 noise = 5 number_of_clusters = 1 N = 30 K = 2 graphs = [rn.Random_Network(N, 2) for i in range(number_of_clusters)] single_cluster_control_nodes = [ rn.find_control_nodes(graphs[i], N) for i in range(number_of_clusters) ] control_nodes = [ single_cluster_control_nodes[i] + i * N for i in range(number_of_clusters) ] tot = rn.create_clusters(graphs, control_nodes, N, number_of_clusters) Net = rn.Network(tot) ############# INITIAL CONDITIONS ######################## # for i in range(number_of_clusters): # Net.nodes[control_nodes[i]] = 1 # Net.nodes[np.random.randint(N*i,N*(i+1))] = 1 Net.nodes = np.ones((N * number_of_clusters, 1)) for i in range(noise): activities = [] Net = rn.Random_Network(N, K) Net.nodes = np.ones((N * number_of_clusters, 1)) for j in range(time): #for i in control_nodes: ##### PROBABILITÀ DI AZZERARE IL CONTROL NODE AD OGNI STEP
a = True while a: try: graphs = [rn.Random_Network(N, K)] graphs.append(rn.Random_Network(M, K1)) control_nodes.append([ graphs[i].control_nodes[0] + i * N for i in range(number_of_clusters) ]) env_control_nodes.append([ graphs[i].control_nodes[1] + i * N for i in range(number_of_clusters) ]) tot = rn.create_net(graphs, control_nodes[i], env_control_nodes[i], N, M) net = rn.Network(tot, number_of_clusters) qx.append(net) a = False except: pass ######################### INITIAL CONDITIONS ################################ # for i in range(realizations): # #qx[i].nodes[np.random.randint(N+M)] = 1 for j in range(N, N + M): qx[i].nodes[j] = 1 ############################################################################# act = np.zeros(realizations) t = np.zeros(realizations) times = []
number_of_clusters = 3 #creation of the subnetworks gr = [rn.Random_Network(N, K) for i in range(number_of_clusters)] single_cluster_control_nodes = [ rn.find_control_nodes(gr[i], N) for i in range(number_of_clusters) ] control_nodes = [ single_cluster_control_nodes[i] + i * N for i in range(number_of_clusters) ] tot = rn.create_clusters(gr, control_nodes, N, number_of_clusters) negedges = list(zip(list(np.where(tot.T < 0)[0]), list(np.where(tot.T < 0)[1]))) Net = rn.Network(tot) graph = nx.from_numpy_matrix(tot.T, create_using=nx.DiGraph) npos = nx.spring_layout(graph) cycles = nx.cycle_basis(graph.to_undirected()) ################## ONLY FOR VISUALIZATION ####################### abs_tot = abs(tot) graph1 = nx.from_numpy_matrix(abs_tot.T, create_using=nx.DiGraph) npos = nx.kamada_kawai_layout(graph1) ################################################################# ########################################################################################################## fig, ax = plt.subplots() plt.subplots_adjust(left=0.25, bottom=0.25) f0 = 1