Ejemplo n.º 1
0
def own_stitching_run():
    
    kpo1 ,ds1= sift.harris_own(own1)
    kpo2 ,ds2= sift.harris_own(own2)
    kpo3 ,ds3= sift.harris_own(own3)
    
    imgo1 = cv2.imread(img_own_1)
    imgo2 = cv2.imread(img_own_2)
    imgo3 = cv2.imread(img_own_3)
 
    good_matches_o = sift.match_own(imgo1,imgo2, kpo1, kpo2)
    hom_o, homInv_o,inliersFinal_o  = ran.RANSAC(good_matches_o,100,.2,kpo1,kpo2)
    pano_o, b1,b2= st.stitch(own1, own2, hom_o, homInv_o)
    cv2.imwrite(path_result+'/ownstep2.jpg',pano_o.astype(np.uint8))
    
    a = cv2.imread(path_result + '/ownstep2.jpg')
    kpos ,ds4 = sift.harris_own(a)
    own = cv2.imread(path_result + '/ownstep2.jpg')
    good_matches_o2 = sift.match_own(own ,imgo3, kpos, kpo3)
    hom_o2, homInv_o2,inliersFinal_o2  = ran.RANSAC(good_matches_o2,300,.2,kpos,kpo3)
    pano_o2, b1,b2= st.stitch(own, own3, hom_o2, homInv_o2)
    cv2.imwrite(path_result+'/ownStitched.png',pano_o2.astype(np.uint8))
    
    cv2.imshow("ownStitched", pano_o2.astype(np.uint8))
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 2
0
 def test_ransac(self, inlier_ratio=1.0, inlier_noise=0):
     n_iter = trial_count(inlier_ratio, self.n_sample)
     data = self.make_data(inlier_ratio, inlier_noise)
     ransac_instance = ransac.RANSAC(
         n_sample=self.n_sample,
         n_iter=n_iter,
         err_thres=0.01,
     )
     best_func, inliers = ransac_instance(data, self.model)
     self.assertGreaterEqual(len(inliers) / len(data), 0.9 * inlier_ratio)
     np.testing.assert_array_almost_equal(best_func.matrix,
                                          self.ground_truth,
                                          decimal=2)
     print('[*] ({ratio:0<.2}, {noise}) ransac error: {error:.8}'.format(
         ratio=inlier_ratio,
         noise=inlier_noise,
         error=np.sqrt(((best_func.matrix - self.ground_truth)**2).sum())))
Ejemplo n.º 3
0
    def compute_rotation_and_consistency_pano(self, idx1, idxb):
        """
    Function to compute the rotation and count consistency between two indexes in the Panorama stitcher
    """

        #Initialize classes to match descriptors and find consistency
        desc_ex = interest_point.DescriptorExtractor()
        rn = ransac.RANSAC()

        #Get matching descriptors for the two photos to calculate consistency
        ip1 = self.interest_points[idxb]
        ip2 = self.interest_points[idx1]
        desc1 = self.descriptors[idxb]
        desc2 = self.descriptors[idx1]
        match_idx = desc_ex.match_descriptors(desc1, desc2)
        ipb = ip2[:, match_idx]

        #Set params and variables to hold info from match_images (divide rows by 2 since they contain both entries)
        ip_rows = int(self.matches[idxb][idx1].shape[0] / 2)
        ip_cols = self.matches[idxb][idx1].shape[1]
        ip1c = np.ndarray((ip_rows, ip_cols))
        ipbc = np.ndarray((ip_rows, ip_cols))
        ip1c[0] = self.matches[idxb][idx1][0]
        ip1c[1] = self.matches[idxb][idx1][1]
        ipbc[0] = self.matches[idxb][idx1][2]
        ipbc[1] = self.matches[idxb][idx1][3]

        #Get the rotation for the best match
        K1 = geometry.get_calibration(self.images[idxb].shape,
                                      self.params['fov_degrees'])
        K2 = geometry.get_calibration(self.images[idx1].shape,
                                      self.params['fov_degrees'])
        R, H = geometry.compute_rotation(ip1c, ipbc, K1, K2)

        #Calculate the consistency between the two photos
        inliers = rn.consistent(H, ip1, ipb)
        num_inliers_s = np.sum(inliers)

        return R, num_inliers_s
        """
Ejemplo n.º 4
0
    def match_images(self, images):
        """
    Find geometrically consistent matches between images
    """
        # extract interest points and descriptors
        print('[ find interest points ]')
        t0 = time()
        interest_points = []
        descriptors = []
        ip_ex = interest_point.InterestPointExtractor()
        desc_ex = interest_point.DescriptorExtractor()
        num_images = len(images)

        for i in range(num_images):
            im = images[i]
            img = np.mean(im, 2, keepdims=True)
            ip = ip_ex.find_interest_points(img)
            print(' found ' + str(ip.shape[1]) + ' interest points')
            interest_points.append(ip)
            desc = desc_ex.get_descriptors(img, ip)
            descriptors.append(desc)
            if self.params['draw_interest_points']:
                interest_point.draw_interest_points_file(
                    im, ip,
                    self.params['results_dir'] + '/ip' + str(i) + '.jpg')

        t1 = time()
        print(' % .2f secs ' % (t1 - t0))

        # match descriptors and perform ransac
        print('[ match descriptors ]')
        matches = [[None] * num_images for _ in range(num_images)]
        num_matches = np.zeros((num_images, num_images))

        t0 = time()
        rn = ransac.RANSAC()

        for i in range(num_images):
            ipi = interest_points[i]
            print(' image ' + str(i))
            for j in range(num_images):
                if (i == j):
                    continue

                matchesij = desc_ex.match_descriptors(descriptors[i],
                                                      descriptors[j])
                ipm = interest_points[j][:, matchesij]
                S, inliers = rn.ransac_similarity(ipi, ipm)
                num_matches[i, j] = np.sum(inliers)
                ipic = ipi[:, inliers]
                ipmc = ipm[:, inliers]
                matches[i][j] = np.concatenate((ipic, ipmc), 0)

                if (self.params['draw_matches']):
                    imi = images[i]
                    imj = images[j]
                    interest_point.draw_matches_file(
                        imi, imj, ipi, ipm, self.params['results_dir'] +
                        '/match_raw_' + str(i) + str(j) + '.jpg')
                    interest_point.draw_matches_file(
                        imi, imj, ipic, ipmc, self.params['results_dir'] +
                        '/match_' + str(i) + str(j) + '.jpg')

        t1 = time()
        print(' % .2f secs' % (t1 - t0))

        return matches, num_matches
 images = images[1:]
 index = 1
 while True:
     print("Adding image ", index)
     index += 1
     max_inliers = 0
     max_inliers_index = 0
     max_inliers_homography = None
     max_inliers_inverse_homography = None
     for i in range(len(images)):
         matches, matching_image = utl.get_matches(final_image, images[i])
         homography, inverse_homography, match_image, number_of_inliers = ransac.RANSAC(
             matches=matches,
             numMatches=4,
             numIterations=150,
             inlierThreshold=50,
             hom=None,
             homInv=None,
             image1Display=final_image,
             image2Display=images[i])
         if number_of_inliers > max_inliers:
             max_inliers = number_of_inliers
             max_inliers_index = i
             max_inliers_homography = homography
             max_inliers_inverse_homography = inverse_homography
     print("Best current match: ", images[max_inliers_index].image_name)
     print("Stitching")
     final_image = stitch(final_image, images[max_inliers_index],
                          max_inliers_homography,
                          max_inliers_inverse_homography)
     images = images[:max_inliers_index] + images[max_inliers_index + 1:]
Ejemplo n.º 6
0
# EXTRA CREDIT : Old_port Keypoint Detect
import SiftKeypointDetector as newDetect

o, image31_magnitude, image31_orientations, keypoint_image31 = h.Corner(imharris31, .5) #.5, 1.1
p, image32_magnitude, image32_orientations, keypoint_image32 = h.Corner(imharris32,1.1)
keypoints31 = newDetect.new_impl(imgex31)
keypoints32 = newDetect.new_impl(imgex32)

# Question 2 : describe features and draw keypoints
key1, key2, good, matched_keypoints = fea.runDescriptor(imharris1, keypoints1, image1_magnitude, image1_orientations,imharris2, keypoints2, image2_magnitude, image2_orientations, .7)
cv2.imwrite(path_result+'/2'+'.png',matched_keypoints.astype(np.uint8))

# # Question 3: run the Ransac algorithm to compute homography, draw the inliers
good_matches,kp1,kp2 = sift.match(img1,img2)
hom, homInv,inliersFinal  = ran.RANSAC(good_matches,800,.9,kp1,kp2)
im_inlier = cv2.drawMatches(img1,kp1, img2, kp2, inliersFinal, None, flags=2)
cv2.imwrite(path_result+'/3.png',im_inlier.astype(np.uint8))
cv2.imshow("Inliers", im_inlier)
cv2.waitKey(0)
cv2.destroyAllWindows()


# #  Question 4: Stitch the two images based on the inliers given by the ransac algorithm
i =0
pano = []
panorama, blend1,blend2= st.stitch(img1, img2, hom, homInv)
pano.append(panorama.astype(np.uint8))
cv2.imwrite(path_result+'/4.png',panorama.astype(np.uint8))
cv2.imshow("Stitched", pano[0])
cv2.waitKey(0)
Ejemplo n.º 7
0
    def ransac_2_new_dimension(self, n_unit_threshold, cylinder_value, circle_number_start):
        # Add a new dimension holding the circle numbers
        self.add_dimension("circle", 3, "")
        #self.reset_dimension("circle")

        # Open the file
        las = laspy.file.File(self.filename, mode="rw")

        mins = las.header.min
        maxs = las.header.max
        points = las.header.records_count
        area = (maxs[0]-mins[0])*(maxs[1]-mins[1])
        
        # Threshold distance
        unit_threshold = area / points
        threshold = n_unit_threshold*unit_threshold
        print(threshold)

        slice_data = getattr(las, "slice")
        cylinder_data = getattr(las, "cylinder")
        circle_data = getattr(las, "circle")
        n_slices = slice_data.max()
        
        circle_number = circle_number_start
        # Circle format for evlrs: { slice: [[circle_number center_point, radius]]}
        circles = []

        for i in tqdm.tqdm(reversed(range(n_slices)), total=n_slices):
            
            idx = (cylinder_data == cylinder_value) & (slice_data == i)
            if len(las.x[idx]) < 3:
                continue

            data = np.vstack([las.x[idx], las.y[idx]]).T
            new_idx = getattr(las, "index")[idx]
            
            # make ransac class
            # n: how many times try sampling
            rransac = ransac.RANSAC(las.x[idx].T, las.y[idx].T, 100)
            
            # execute ransac algorithm
            rransac.execute_ransac(threshold)
            
            # get best model from ransac
            a, b, r = rransac.best_model[0], rransac.best_model[1], rransac.best_model[2]
            if a is None or b is None or r is None:
                continue
            # get the inliers or outliers
            inlier_idxs = []
            for idx, (x, y) in enumerate(zip(las.x[idx], las.y[idx])):

                if np.abs(math.sqrt((x-a)**2 + (y-b)**2) - r) < threshold:
                    inlier_idxs.append(idx)

            original_idxs = new_idx[inlier_idxs]
            circle_data[original_idxs] = circle_number
            circles.append(Circle(circle_number, a, b, las.z[original_idxs], r, slice_number=i, support=len(inlier_idxs), original_idxs=original_idxs))
            setattr(las, "circle", circle_data)
            circle_number += 1

        las.close()
        return circles, circle_number