Ejemplo n.º 1
0
async def test_adding_e2e_actions_to_domain(project: Text):
    config_path = os.path.join(project, DEFAULT_CONFIG_PATH)
    domain_path = os.path.join(project, DEFAULT_DOMAIN_PATH)
    default_data_path = os.path.join(project, DEFAULT_DATA_PATH)
    existing = TrainingDataImporter.load_from_dict({}, config_path,
                                                   domain_path,
                                                   [default_data_path])

    additional_actions = ["Hi Joey.", "it's sunny outside."]
    stories = StoryGraph([
        StoryStep(events=[
            UserUttered("greet_from_stories", {"name": "greet_from_stories"}),
            ActionExecuted("utter_greet_from_stories"),
        ]),
        StoryStep(events=[
            UserUttered("how are you doing?", {"name": "greet_from_stories"}),
            ActionExecuted(additional_actions[0],
                           action_text=additional_actions[0]),
            ActionExecuted(additional_actions[1],
                           action_text=additional_actions[1]),
            ActionExecuted(additional_actions[1],
                           action_text=additional_actions[1]),
        ]),
    ])

    # Patch to return our test stories
    existing.get_stories = asyncio.coroutine(lambda *args: stories)

    importer = E2EImporter(existing)
    domain = await importer.get_domain()

    assert all(action_name in domain.action_names
               for action_name in additional_actions)
Ejemplo n.º 2
0
 def _next_story_steps(self):
     start_checkpoints = self._prev_end_checkpoints()
     if not start_checkpoints:
         start_checkpoints = [Checkpoint(STORY_START)]
     current_turns = [StoryStep(block_name=self.name,
                                start_checkpoints=start_checkpoints)]
     return current_turns
Ejemplo n.º 3
0
async def test_without_additional_e2e_examples(tmp_path: Path):
    domain_path = tmp_path / "domain.yml"
    domain_path.write_text(Domain.empty().as_yaml())

    config_path = tmp_path / "config.yml"
    config_path.touch()

    existing = TrainingDataImporter.load_from_dict({}, str(config_path),
                                                   str(domain_path), [])

    stories = StoryGraph([
        StoryStep(events=[
            UserUttered("greet_from_stories", {"name": "greet_from_stories"}),
            ActionExecuted("utter_greet_from_stories"),
        ])
    ])

    # Patch to return our test stories
    existing.get_stories = asyncio.coroutine(lambda *args: stories)

    importer = E2EImporter(existing)

    training_data = await importer.get_nlu_data()

    assert training_data.training_examples
    assert training_data.is_empty()
    assert not training_data.without_empty_e2e_examples().training_examples
Ejemplo n.º 4
0
    def _process_step(
        self, step: StoryStep, incoming_trackers: List[TrackerWithCachedStates]
    ) -> TrackersTuple:
        """Processes a steps events with all trackers.

        The trackers that reached the steps starting checkpoint will
        be used to process the events. Collects and returns training
        data while processing the story step."""

        events = step.explicit_events(self.domain)

        trackers = []
        if events:  # small optimization

            # need to copy the tracker as multiple story steps
            # might start with the same checkpoint and all of them
            # will use the same set of incoming trackers

            for tracker in incoming_trackers:
                # sender id is used to be able for a human to see where the
                # messages and events for this tracker came from - to do this
                # we concatenate the story block names of the blocks that
                # contribute to the trackers events
                if tracker.sender_id:
                    if step.block_name not in tracker.sender_id.split(" > "):
                        new_sender = tracker.sender_id + " > " + step.block_name
                    else:
                        new_sender = tracker.sender_id
                else:
                    new_sender = step.block_name
                trackers.append(tracker.copy(new_sender, step.source_name))

        end_trackers = []
        for event in events:
            for tracker in trackers:
                if isinstance(
                    event, (ActionReverted, UserUtteranceReverted, Restarted)
                ):
                    end_trackers.append(tracker.copy(tracker.sender_id))
                if step.is_rule:
                    # The rules can specify that a form or a slot shouldn't be set,
                    # therefore we need to distinguish between not set
                    # and explicitly set to None
                    if isinstance(event, ActiveLoop) and event.name is None:
                        event.name = SHOULD_NOT_BE_SET

                    if isinstance(event, SlotSet) and event.value is None:
                        event.value = SHOULD_NOT_BE_SET

                tracker.update(event)

        # end trackers should be returned separately
        # to avoid using them for augmentation
        return trackers, end_trackers
Ejemplo n.º 5
0
 def _next_story_steps(self) -> List[StoryStep]:
     start_checkpoints = self._prev_end_checkpoints()
     if not start_checkpoints:
         start_checkpoints = [Checkpoint(STORY_START)]
     current_turns = [
         StoryStep(
             block_name=self.name,
             start_checkpoints=start_checkpoints,
             source_name=self.source_name,
             is_rule=self.is_rule,
         )
     ]
     return current_turns
Ejemplo n.º 6
0
    def _process_step(
            self, step: StoryStep,
            incoming_trackers: List[TrackerWithCachedStates]) -> TrackersTuple:
        """Processes a steps events with all trackers.

        The trackers that reached the steps starting checkpoint will
        be used to process the events. Collects and returns training
        data while processing the story step."""

        events = step.explicit_events(self.domain)

        trackers = []
        if events:  # small optimization

            # need to copy the tracker as multiple story steps
            # might start with the same checkpoint and all of them
            # will use the same set of incoming trackers

            for tracker in incoming_trackers:
                # sender id is used to be able for a human to see where the
                # messages and events for this tracker came from - to do this
                # we concatenate the story block names of the blocks that
                # contribute to the trackers events
                if tracker.sender_id:
                    if step.block_name not in tracker.sender_id.split(" > "):
                        new_sender = tracker.sender_id + " > " + step.block_name
                    else:
                        new_sender = tracker.sender_id
                else:
                    new_sender = step.block_name
                trackers.append(
                    tracker.copy(new_sender, tracker.request_id,
                                 tracker.user_id))

        end_trackers = []
        for event in events:
            for tracker in trackers:
                if isinstance(
                        event,
                    (ActionReverted, UserUtteranceReverted, Restarted)):
                    end_trackers.append(
                        tracker.copy(tracker.sender_id, tracker.request_id,
                                     tracker.user_id))
                tracker.update(event)

        # end trackers should be returned separately
        # to avoid using them for augmentation
        return trackers, end_trackers
Ejemplo n.º 7
0
 def __prepare_training_story_step(self, bot: Text):
     for story in Stories.objects(bot=bot, status=True):
         story_events = list(
             self.__prepare_training_story_events(
                 story.events,
                 datetime.now().timestamp()))
         yield StoryStep(
             block_name=story.block_name,
             events=story_events,
             start_checkpoints=[
                 Checkpoint(start_checkpoint)
                 for start_checkpoint in story.start_checkpoints
             ],
             end_checkpoints=[
                 Checkpoint(end_checkpoints)
                 for end_checkpoints in story.end_checkpoints
             ],
         )
Ejemplo n.º 8
0
async def test_import_nlu_training_data_from_e2e_stories(project: Text):
    config_path = os.path.join(project, DEFAULT_CONFIG_PATH)
    domain_path = os.path.join(project, DEFAULT_DOMAIN_PATH)
    default_data_path = os.path.join(project, DEFAULT_DATA_PATH)
    importer = TrainingDataImporter.load_from_dict({}, config_path,
                                                   domain_path,
                                                   [default_data_path])

    # The `E2EImporter` correctly wraps the underlying `CombinedDataImporter`
    assert isinstance(importer, E2EImporter)
    importer_without_e2e = importer.importer

    stories = StoryGraph([
        StoryStep(events=[
            SlotSet("some slot", "doesn't matter"),
            UserUttered("greet_from_stories", {"name": "greet_from_stories"}),
            ActionExecuted("utter_greet_from_stories"),
        ]),
        StoryStep(events=[
            UserUttered("how are you doing?"),
            ActionExecuted("utter_greet_from_stories", action_text="Hi Joey."),
        ]),
    ])

    # Patch to return our test stories
    importer_without_e2e.get_stories = asyncio.coroutine(lambda *args: stories)

    # The wrapping `E2EImporter` simply forwards these method calls
    assert (await importer_without_e2e.get_stories()).as_story_string() == (
        await importer.get_stories()).as_story_string()
    assert (await importer_without_e2e.get_config()) == (await
                                                         importer.get_config())

    # Check additional NLU training data from stories was added
    nlu_data = await importer.get_nlu_data()

    # The `E2EImporter` adds NLU training data based on our training stories
    assert len(nlu_data.training_examples) > len(
        (await importer_without_e2e.get_nlu_data()).training_examples)

    # Check if the NLU training data was added correctly from the story training data
    expected_additional_messages = [
        Message(data={
            TEXT: "greet_from_stories",
            INTENT_NAME: "greet_from_stories"
        }),
        Message(data={
            ACTION_NAME: "utter_greet_from_stories",
            ACTION_TEXT: ""
        }),
        Message(data={
            TEXT: "how are you doing?",
            INTENT_NAME: None
        }),
        Message(data={
            ACTION_NAME: "utter_greet_from_stories",
            ACTION_TEXT: "Hi Joey."
        }),
    ]

    assert all(m in nlu_data.training_examples
               for m in expected_additional_messages)