Ejemplo n.º 1
0
async def _train_core_with_validated_data(
    domain: Domain,
    config: Text,
    story_directory: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    uncompress: bool = False,
    kwargs: Optional[Dict] = None,
) -> Optional[Text]:
    """Train Core with validated training and config data."""

    import rasa.core.train

    if not os.listdir(story_directory):
        print_error(
            "No dialogue data given. Please provide dialogue data in order to "
            "train a Rasa Core model.")
        return

    _train_path = train_path or tempfile.mkdtemp()

    # normal (not compare) training
    print_color("Start training dialogue model ...", color=bcolors.OKBLUE)
    await rasa.core.train(
        domain_file=domain,
        stories_file=story_directory,
        output_path=os.path.join(_train_path, "core"),
        policy_config=config,
        kwargs=kwargs,
    )
    print_color("Done.", color=bcolors.OKBLUE)

    if not train_path:
        # Only Core was trained.
        output_path = create_output_path(output,
                                         prefix="core-",
                                         fixed_name=fixed_model_name)
        new_fingerprint = model.model_fingerprint(config,
                                                  domain,
                                                  stories=story_directory)
        model.create_package_rasa(_train_path, output_path, new_fingerprint)

        if uncompress:
            output_path = decompress(output_path)

        print_success(
            "Your Rasa Core model is trained and saved at '{}'.".format(
                output_path))

        return output_path

    return _train_path
Ejemplo n.º 2
0
def _train_nlu_with_validated_data(
    config: Text,
    nlu_data_directory: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    uncompress: bool = False,
) -> Optional[Text]:
    """Train NLU with validated training and config data."""

    import rasa.nlu.train

    if not os.listdir(nlu_data_directory):
        print_error(
            "No NLU data given. Please provide NLU data in order to train "
            "a Rasa NLU model.")
        return

    _train_path = train_path or tempfile.mkdtemp()

    print_color("Start training NLU model ...", color=bcolors.OKBLUE)
    _, nlu_model, _ = rasa.nlu.train(config,
                                     nlu_data_directory,
                                     _train_path,
                                     fixed_model_name="nlu")
    print_color("Done.", color=bcolors.OKBLUE)

    if not train_path:
        # Only NLU was trained
        output_path = create_output_path(output,
                                         prefix="nlu-",
                                         fixed_name=fixed_model_name)
        new_fingerprint = model.model_fingerprint(config,
                                                  nlu_data=nlu_data_directory)

        model.create_package_rasa(_train_path, output_path, new_fingerprint)

        if uncompress:
            output_path = decompress(output_path)

        print_success(
            "Your Rasa NLU model is trained and saved at '{}'.".format(
                output_path))

        return output_path

    return _train_path
Ejemplo n.º 3
0
def _package_model(
    new_fingerprint: Fingerprint,
    output_path: Text,
    train_path: Text,
    fixed_model_name: Optional[Text] = None,
    model_prefix: Text = "",
    uncompress: bool = False,
):
    output_path = create_output_path(output_path,
                                     prefix=model_prefix,
                                     fixed_name=fixed_model_name)
    model.create_package_rasa(train_path, output_path, new_fingerprint)

    if uncompress:
        output_path = decompress(output_path)

    print_success("Your Rasa model is trained and saved at '{}'.".format(
        os.path.abspath(output_path)))

    return output_path
Ejemplo n.º 4
0
def test_decompress(trained_model):
    output_path = decompress(trained_model)

    assert os.path.exists(output_path)
    assert os.path.isdir(output_path)
    assert not os.path.exists(trained_model)
Ejemplo n.º 5
0
async def train_async(
    domain: Optional,
    config: Text,
    training_files: Optional[Union[Text, List[Text]]],
    output_path: Text = DEFAULT_MODELS_PATH,
    force_training: bool = False,
    fixed_model_name: Optional[Text] = None,
    uncompress: bool = False,
    kwargs: Optional[Dict] = None,
) -> Optional[Text]:
    """Trains a Rasa model (Core and NLU).

    Args:
        domain: Path to the domain file.
        config: Path to the config for Core and NLU.
        training_files: Paths to the training data for Core and NLU.
        output_path: Output path.
        force_training: If `True` retrain model even if data has not changed.
        fixed_model_name: Name of model to be stored.
        uncompress: If `True` the model will not be compressed.
        kwargs: Additional training parameters.

    Returns:
        Path of the trained model archive.
    """
    config = get_valid_config(config, CONFIG_MANDATORY_KEYS)

    train_path = tempfile.mkdtemp()
    old_model = model.get_latest_model(output_path)
    retrain_core = True
    retrain_nlu = True

    skill_imports = SkillSelector.load(config)
    try:
        domain = Domain.load(domain, skill_imports)
    except InvalidDomain as e:
        print_error(e)
        return None

    story_directory, nlu_data_directory = data.get_core_nlu_directories(
        training_files, skill_imports)
    new_fingerprint = model.model_fingerprint(config, domain,
                                              nlu_data_directory,
                                              story_directory)

    dialogue_data_not_present = not os.listdir(story_directory)
    nlu_data_not_present = not os.listdir(nlu_data_directory)

    if dialogue_data_not_present and nlu_data_not_present:
        print_error(
            "No training data given. Please provide dialogue and NLU data in "
            "order to train a Rasa model.")
        return

    if dialogue_data_not_present:
        print_warning(
            "No dialogue data present. Just a Rasa NLU model will be trained.")
        return _train_nlu_with_validated_data(
            config=config,
            nlu_data_directory=nlu_data_directory,
            output=output_path,
            fixed_model_name=fixed_model_name,
            uncompress=uncompress,
        )

    if nlu_data_not_present:
        print_warning(
            "No NLU data present. Just a Rasa Core model will be trained.")
        return await _train_core_with_validated_data(
            domain=domain,
            config=config,
            story_directory=story_directory,
            output=output_path,
            fixed_model_name=fixed_model_name,
            uncompress=uncompress,
            kwargs=kwargs,
        )

    if not force_training and old_model:
        unpacked = model.unpack_model(old_model)
        old_core, old_nlu = model.get_model_subdirectories(unpacked)
        last_fingerprint = model.fingerprint_from_path(unpacked)

        if not model.core_fingerprint_changed(last_fingerprint,
                                              new_fingerprint):
            target_path = os.path.join(train_path, "core")
            retrain_core = not model.merge_model(old_core, target_path)

        if not model.nlu_fingerprint_changed(last_fingerprint,
                                             new_fingerprint):
            target_path = os.path.join(train_path, "nlu")
            retrain_nlu = not model.merge_model(old_nlu, target_path)

    if force_training or retrain_core:
        await _train_core_with_validated_data(
            domain=domain,
            config=config,
            story_directory=story_directory,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            uncompress=uncompress,
            kwargs=kwargs,
        )
    else:
        print("Dialogue data / configuration did not change. "
              "No need to retrain dialogue model.")

    if force_training or retrain_nlu:
        _train_nlu_with_validated_data(
            config=config,
            nlu_data_directory=nlu_data_directory,
            output=output_path,
            train_path=train_path,
            fixed_model_name=fixed_model_name,
            uncompress=uncompress,
        )
    else:
        print(
            "NLU data / configuration did not change. No need to retrain NLU model."
        )

    if retrain_core or retrain_nlu:
        output_path = create_output_path(output_path,
                                         fixed_name=fixed_model_name)
        model.create_package_rasa(train_path, output_path, new_fingerprint)

        if uncompress:
            output_path = decompress(output_path)

        print_success("Your Rasa model is trained and saved at '{}'.".format(
            output_path))

        return output_path
    else:
        print_success(
            "Nothing changed. You can use the old model stored at '{}'"
            "".format(os.path.abspath(old_model)))

        return old_model