Ejemplo n.º 1
0
    def test_readwriteskymodel_no_image(self):
        vis = create_blockvisibility(
            self.midcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            polarisation_frame=PolarisationFrame("linear"),
            weight=1.0)
        gt = create_gaintable_from_blockvisibility(vis, timeslice='auto')
        gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.1)
        sm = SkyModel(components=[self.comp], gaintable=gt)

        config = {
            "buffer": {
                "directory": self.dir
            },
            "skymodel": {
                "name": "test_bufferskymodel.hdf",
                "data_model": "SkyModel"
            }
        }
        bdm = BufferSkyModel(config["buffer"], config["skymodel"], sm)
        bdm.sync()
        new_bdm = BufferSkyModel(config["buffer"], config["skymodel"])
        new_bdm.sync()
        newsm = bdm.memory_data_model

        assert newsm.components[0].flux.shape == self.comp.flux.shape
        assert newsm.gaintable.data.shape == gt.data.shape
Ejemplo n.º 2
0
    def test_readwritegaintable(self):
        self.vis = create_blockvisibility(
            self.midcore,
            self.times,
            self.frequency,
            channel_bandwidth=self.channel_bandwidth,
            phasecentre=self.phasecentre,
            polarisation_frame=PolarisationFrame("linear"),
            weight=1.0)
        gt = create_gaintable_from_blockvisibility(self.vis, timeslice='auto')
        gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.1)

        config = {
            "buffer": {
                "directory": self.dir
            },
            "gaintable": {
                "name": "test_buffergaintable.hdf",
                "data_model": "GainTable"
            }
        }
        bdm = BufferGainTable(config["buffer"], config["gaintable"], gt)
        bdm.sync()
        new_bdm = BufferGainTable(config["buffer"], config["gaintable"])
        new_bdm.sync()
        newgt = bdm.memory_data_model

        assert gt.data.shape == newgt.data.shape
        assert numpy.max(numpy.abs(gt.gain - newgt.gain)) < 1e-15
 def test_plot_gaintable_scalar(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0])
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=0.1, amplitude_error=0.1)
     plt.clf()
     gaintable_plot(gt)
     plt.show(block=False)
Ejemplo n.º 4
0
 def test_apply_gaintable_only(self):
     for spf, dpf in[('stokesI', 'stokesI'), ('stokesIQUV', 'linear'), ('stokesIQUV', 'circular')]:
         self.actualSetup(spf, dpf)
         gt = create_gaintable_from_blockvisibility(self.vis, timeslice='auto')
         log.info("Created gain table: %s" % (gaintable_summary(gt)))
         gt = simulate_gaintable(gt, phase_error=0.1, amplitude_error=0.01)
         original = copy_visibility(self.vis)
         vis = apply_gaintable(self.vis, gt)
         error = numpy.max(numpy.abs(vis.vis - original.vis))
         assert error > 10.0, "Error = %f" % (error)
Ejemplo n.º 5
0
 def test_solve_gaintable_scalar_timeslice(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0], ntimes=10)
     gt = create_gaintable_from_blockvisibility(self.vis, timeslice=120.0)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=10.0, amplitude_error=0.0)
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis, original, phase_only=True, niter=200)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
 def test_solve_gaintable_stokesI_pointsource(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0])
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=10.0, amplitude_error=0.0)
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     point_vis = divide_visibility(self.vis, original)
     gtsol = solve_gaintable(point_vis, phase_only=False, niter=200)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
Ejemplo n.º 7
0
 def test_create_gaintable_from_visibility_interval(self):
     for timeslice in [10.0, 'auto', 1e5]:
         for spf, dpf in[('stokesIQUV', 'linear')]:
             self.actualSetup(spf, dpf)
             gt = create_gaintable_from_blockvisibility(self.vis, timeslice=timeslice)
             log.info("Created gain table: %s" % (gaintable_summary(gt)))
             gt = simulate_gaintable(gt, phase_error=1.0)
             original = copy_visibility(self.vis)
             vis = apply_gaintable(self.vis, gt)
             assert numpy.max(numpy.abs(original.vis)) > 0.0
             assert numpy.max(numpy.abs(vis.vis)) > 0.0
             assert numpy.max(numpy.abs(vis.vis - original.vis)) > 0.0
 def test_solve_gaintable_stokesI_small_n_large_t(self):
     # Select only 6 stations
     self.actualSetup('stokesI', 'stokesI', f=[100.0], ntimes=4000, rmax=83)
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=10.0, amplitude_error=0.0)
     gt.data['gain'] = gt.gain[1, ...]
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis, original, phase_only=True, niter=200)
     self.vis = apply_gaintable(self.vis, gtsol)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
    def corrupt_vis(vis, gt, **kwargs):
        if isinstance(vis, Visibility):
            bv = convert_visibility_to_blockvisibility(vis)
        else:
            bv = vis
        if gt is None:
            gt = create_gaintable_from_blockvisibility(bv, **kwargs)
            gt = simulate_gaintable(gt, **kwargs)
            bv = apply_gaintable(bv, gt)

        if isinstance(vis, Visibility):
            return convert_blockvisibility_to_visibility(bv)
        else:
            return bv
Ejemplo n.º 10
0
 def test_readwritegaintable(self):
     self.vis = create_blockvisibility(self.mid, self.times, self.frequency,
                                       channel_bandwidth=self.channel_bandwidth,
                                       phasecentre=self.phasecentre,
                                       polarisation_frame=PolarisationFrame("linear"),
                                       weight=1.0)
     gt = create_gaintable_from_blockvisibility(self.vis, timeslice='auto')
     gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.1)
     export_gaintable_to_hdf5(gt, '%s/test_data_model_helpers_gaintable.hdf' % self.dir)
     newgt = import_gaintable_from_hdf5('%s/test_data_model_helpers_gaintable.hdf' % self.dir)
 
     for key in gt.data.dtype.fields:
         assert numpy.max(numpy.abs(newgt.data[key] - gt.data[key])) < 1e-15
 
     assert gt.data.shape == newgt.data.shape
     assert numpy.max(numpy.abs(gt.gain - newgt.gain)) < 1e-15
Ejemplo n.º 11
0
 def test_solve_gaintable_scalar_normalise(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0])
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=0.0, amplitude_error=0.1)
     gt.data['gain'] *= 2.0
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis,
                             original,
                             phase_only=False,
                             niter=200,
                             normalise_gains=True)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
Ejemplo n.º 12
0
 def test_calibrate_G_function(self):
     self.actualSetup('stokesIQUV', 'linear', f=[100.0, 0.0, 0.0, 50.0])
     # Prepare the corrupted visibility data_models
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt, phase_error=0.0, amplitude_error=0.1)
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     # Now get the control dictionary and calibrate
     controls = create_calibration_controls()
     controls['G']['first_selfcal'] = 0
     calibrated_vis, gaintables = calibrate_chain(self.vis,
                                                  original,
                                                  calibration_context='G',
                                                  controls=controls)
     residual = numpy.max(gaintables['G'].residual)
     assert residual < 1e-8, "Max T residual = %s" % residual
 def test_solve_gaintable_stokesI_bandpass(self):
     self.actualSetup('stokesI', 'stokesI', f=[100.0], vnchan=128)
     gt = create_gaintable_from_blockvisibility(self.vis)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt,
                             phase_error=10.0,
                             amplitude_error=0.01,
                             smooth_channels=8)
     original = copy_visibility(self.vis)
     self.vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis,
                             original,
                             phase_only=False,
                             niter=200,
                             damping=0.5)
     residual = numpy.max(gtsol.residual)
     assert residual < 3e-8, "Max residual = %s" % (residual)
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
Ejemplo n.º 14
0
 def core_solve(self,
                spf,
                dpf,
                phase_error=0.1,
                amplitude_error=0.0,
                leakage=0.0,
                phase_only=True,
                niter=200,
                crosspol=False,
                residual_tol=1e-6,
                f=None,
                vnchan=3,
                timeslice='auto'):
     if f is None:
         f = [100.0, 50.0, -10.0, 40.0]
     self.actualSetup(spf, dpf, f=f, vnchan=vnchan)
     gt = create_gaintable_from_blockvisibility(self.vis,
                                                timeslice=timeslice)
     log.info("Created gain table: %s" % (gaintable_summary(gt)))
     gt = simulate_gaintable(gt,
                             phase_error=phase_error,
                             amplitude_error=amplitude_error,
                             leakage=leakage)
     original = copy_visibility(self.vis)
     vis = apply_gaintable(self.vis, gt)
     gtsol = solve_gaintable(self.vis,
                             original,
                             phase_only=phase_only,
                             niter=niter,
                             crosspol=crosspol,
                             tol=1e-6)
     vis = apply_gaintable(vis, gtsol, inverse=True)
     residual = numpy.max(gtsol.residual)
     assert residual < residual_tol, "%s %s Max residual = %s" % (spf, dpf,
                                                                  residual)
     log.debug(qa_gaintable(gt))
     assert numpy.max(numpy.abs(gtsol.gain - 1.0)) > 0.1
Ejemplo n.º 15
0
    def actualSetUp(self,
                    nfreqwin=3,
                    dospectral=True,
                    dopol=False,
                    amp_errors=None,
                    phase_errors=None,
                    zerow=True):

        if amp_errors is None:
            amp_errors = {'T': 0.0, 'G': 0.1}
        if phase_errors is None:
            phase_errors = {'T': 1.0, 'G': 0.0}

        self.npixel = 512
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = nfreqwin
        self.vis_list = list()
        self.ntimes = 1
        self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
        self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)

        if self.freqwin > 1:
            self.channelwidth = numpy.array(
                self.freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.channelwidth = numpy.array([1e6])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        if dospectral:
            flux = numpy.array(
                [f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
        else:
            flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.blockvis_list = [
            ingest_unittest_visibility(self.low, [self.frequency[i]],
                                       [self.channelwidth[i]],
                                       self.times,
                                       self.vis_pol,
                                       self.phasecentre,
                                       block=True,
                                       zerow=zerow) for i in range(nfreqwin)
        ]

        for v in self.blockvis_list:
            v.data['vis'][...] = 1.0 + 0.0j

        self.error_blockvis_list = [
            copy_visibility(v) for v in self.blockvis_list
        ]
        gt = create_gaintable_from_blockvisibility(self.blockvis_list[0])
        gt = simulate_gaintable(gt,
                                phase_error=0.1,
                                amplitude_error=0.0,
                                smooth_channels=1,
                                leakage=0.0)
        self.error_blockvis_list = [
            apply_gaintable(self.error_blockvis_list[i], gt)
            for i in range(self.freqwin)
        ]

        assert numpy.max(
            numpy.abs(self.error_blockvis_list[0].vis -
                      self.blockvis_list[0].vis)) > 0.0
    def actualSetUp(self,
                    add_errors=False,
                    nfreqwin=7,
                    dospectral=True,
                    dopol=False,
                    zerow=True):

        self.npixel = 512
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = nfreqwin
        self.vis_list = list()
        self.ntimes = 5
        self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
        self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)

        if self.freqwin > 1:
            self.channelwidth = numpy.array(
                self.freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.channelwidth = numpy.array([1e6])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, 0.0, 0.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        if dospectral:
            flux = numpy.array(
                [f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
        else:
            flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.blockvis_list = \
            [rsexecute.execute(ingest_unittest_visibility, nout=1)(self.low,
                                                                   [self.frequency[i]],
                                                                   [self.channelwidth[i]],
                                                                   self.times,
                                                                   self.vis_pol,
                                                                   self.phasecentre, block=True,
                                                                   zerow=zerow)
             for i in range(nfreqwin)]
        self.blockvis_list = rsexecute.compute(self.blockvis_list, sync=True)
        self.blockvis_list = rsexecute.scatter(self.blockvis_list)

        self.vis_list = [
            rsexecute.execute(convert_blockvisibility_to_visibility,
                              nout=1)(bv) for bv in self.blockvis_list
        ]
        self.vis_list = rsexecute.compute(self.vis_list, sync=True)
        self.vis_list = rsexecute.scatter(self.vis_list)

        self.model_imagelist = [
            rsexecute.execute(create_unittest_model,
                              nout=1)(self.vis_list[i],
                                      self.image_pol,
                                      npixel=self.npixel,
                                      cellsize=0.0005) for i in range(nfreqwin)
        ]
        self.model_imagelist = rsexecute.compute(self.model_imagelist,
                                                 sync=True)
        self.model_imagelist = rsexecute.scatter(self.model_imagelist)

        self.components_list = [
            rsexecute.execute(create_unittest_components)(
                self.model_imagelist[freqwin],
                flux[freqwin, :][numpy.newaxis, :])
            for freqwin, m in enumerate(self.model_imagelist)
        ]
        self.components_list = rsexecute.compute(self.components_list,
                                                 sync=True)
        self.components_list = rsexecute.scatter(self.components_list)

        self.blockvis_list = [
            rsexecute.execute(dft_skycomponent_visibility)(
                self.blockvis_list[freqwin], self.components_list[freqwin])
            for freqwin, _ in enumerate(self.blockvis_list)
        ]
        self.blockvis_list = rsexecute.compute(self.blockvis_list, sync=True)
        self.vis = self.blockvis_list[0]
        self.blockvis_list = rsexecute.scatter(self.blockvis_list)

        self.model_imagelist = [
            rsexecute.execute(insert_skycomponent,
                              nout=1)(self.model_imagelist[freqwin],
                                      self.components_list[freqwin])
            for freqwin in range(nfreqwin)
        ]
        self.model_imagelist = rsexecute.compute(self.model_imagelist,
                                                 sync=True)
        model = self.model_imagelist[0]
        self.cmodel = smooth_image(model)
        if self.persist:
            export_image_to_fits(
                model, '%s/test_pipelines_rsexecute_model.fits' % self.dir)
            export_image_to_fits(
                self.cmodel,
                '%s/test_pipelines_rsexecute_cmodel.fits' % self.dir)

        if add_errors:
            gt = create_gaintable_from_blockvisibility(self.vis)
            gt = simulate_gaintable(gt,
                                    phase_error=0.1,
                                    amplitude_error=0.0,
                                    smooth_channels=1,
                                    leakage=0.0)
            self.blockvis_list = [
                rsexecute.execute(apply_gaintable,
                                  nout=1)(self.blockvis_list[i], gt)
                for i in range(self.freqwin)
            ]
            self.blockvis_list = rsexecute.compute(self.blockvis_list,
                                                   sync=True)
            self.blockvis_list = rsexecute.scatter(self.blockvis_list)

        self.vis_list = [
            rsexecute.execute(convert_blockvisibility_to_visibility)(bv)
            for bv in self.blockvis_list
        ]
        self.vis_list = rsexecute.compute(self.vis_list, sync=True)
        self.vis_list = rsexecute.scatter(self.vis_list)

        self.model_imagelist = [
            rsexecute.execute(create_unittest_model,
                              nout=1)(self.vis_list[i],
                                      self.image_pol,
                                      npixel=self.npixel,
                                      cellsize=0.0005) for i in range(nfreqwin)
        ]
        self.model_imagelist = rsexecute.compute(self.model_imagelist,
                                                 sync=True)
        self.model_imagelist = rsexecute.scatter(self.model_imagelist)
Ejemplo n.º 17
0
    def ingest_visibility(self,
                          freq=None,
                          chan_width=None,
                          times=None,
                          add_errors=False,
                          block=True,
                          bandpass=False):
        if freq is None:
            freq = [1e8]
        if chan_width is None:
            chan_width = [1e6]
        if times is None:
            times = (numpy.pi / 12.0) * numpy.linspace(-3.0, 3.0, 5)

        lowcore = create_named_configuration('LOWBD2', rmax=750.0)
        frequency = numpy.array(freq)
        channel_bandwidth = numpy.array(chan_width)

        phasecentre = SkyCoord(ra=+180.0 * u.deg,
                               dec=-60.0 * u.deg,
                               frame='icrs',
                               equinox='J2000')
        if block:
            vt = create_blockvisibility(
                lowcore,
                times,
                frequency,
                channel_bandwidth=channel_bandwidth,
                weight=1.0,
                phasecentre=phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"))
        else:
            vt = create_visibility(
                lowcore,
                times,
                frequency,
                channel_bandwidth=channel_bandwidth,
                weight=1.0,
                phasecentre=phasecentre,
                polarisation_frame=PolarisationFrame("stokesI"))
        cellsize = 0.001
        model = create_image_from_visibility(
            vt,
            npixel=self.npixel,
            cellsize=cellsize,
            npol=1,
            frequency=frequency,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"))
        nchan = len(self.frequency)
        flux = numpy.array(nchan * [[100.0]])
        facets = 4

        rpix = model.wcs.wcs.crpix - 1.0
        spacing_pixels = self.npixel // facets
        centers = [-1.5, -0.5, 0.5, 1.5]
        comps = list()
        for iy in centers:
            for ix in centers:
                p = int(round(rpix[0] + ix * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[0]))), \
                    int(round(rpix[1] + iy * spacing_pixels * numpy.sign(model.wcs.wcs.cdelt[1])))
                sc = pixel_to_skycoord(p[0], p[1], model.wcs, origin=1)
                comp = create_skycomponent(
                    direction=sc,
                    flux=flux,
                    frequency=frequency,
                    polarisation_frame=PolarisationFrame("stokesI"))
                comps.append(comp)
        if block:
            dft_skycomponent_visibility(vt, comps)
        else:
            dft_skycomponent_visibility(vt, comps)
        insert_skycomponent(model, comps)
        self.comps = comps
        self.model = copy_image(model)
        self.empty_model = create_empty_image_like(model)
        export_image_to_fits(
            model, '%s/test_pipeline_functions_model.fits' % (self.dir))

        if add_errors:
            # These will be the same for all calls
            numpy.random.seed(180555)
            gt = create_gaintable_from_blockvisibility(vt)
            gt = simulate_gaintable(gt, phase_error=1.0, amplitude_error=0.0)
            vt = apply_gaintable(vt, gt)

            if bandpass:
                bgt = create_gaintable_from_blockvisibility(vt, timeslice=1e5)
                bgt = simulate_gaintable(bgt,
                                         phase_error=0.01,
                                         amplitude_error=0.01,
                                         smooth_channels=4)
                vt = apply_gaintable(vt, bgt)

        return vt