def _predict_base(self, fluxthreshold=1.0, name='predict_ng', **kwargs):

        from rascil.processing_components.imaging.ng import predict_ng, invert_ng
        original_vis = copy_visibility(self.blockvis)
        vis = predict_ng(self.blockvis,
                         self.model,
                         verbosity=self.verbosity,
                         **kwargs)
        vis.data['vis'] = vis.data['vis'] - original_vis.data['vis']
        dirty = invert_ng(vis,
                          self.model,
                          dopsf=False,
                          normalize=True,
                          verbosity=self.verbosity,
                          **kwargs)

        # import matplotlib.pyplot as plt
        # from rascil.processing_components.image.operations import show_image
        # npol = dirty[0].shape[1]
        # for pol in range(npol):
        #     plt.clf()
        #     show_image(dirty[0], pol=pol)
        #     plt.show(block=False)

        if self.persist:
            export_image_to_fits(
                dirty[0],
                '%s/test_imaging_ng_%s_residual.fits' % (self.dir, name))

        # assert numpy.max(numpy.abs(dirty[0].data)), "Residual image is empty"

        maxabs = numpy.max(numpy.abs(dirty[0].data))
        assert maxabs < fluxthreshold, "Error %.3f greater than fluxthreshold %.3f " % (
            maxabs, fluxthreshold)
Ejemplo n.º 2
0
 def zero(vis):
     if vis is not None:
         zerovis = copy_visibility(vis)
         zerovis.data['vis'][...] = 0.0
         return zerovis
     else:
         return None
Ejemplo n.º 3
0
def subtract_visibility(vis, model_vis, inplace=False):
    """ Subtract model_vis from vis, returning new visibility
    
    :param vis:
    :param model_vis:
    :return:
    """
    if isinstance(vis, Visibility):
        assert isinstance(model_vis, Visibility), model_vis
    elif isinstance(vis, BlockVisibility):
        assert isinstance(model_vis, BlockVisibility), model_vis
    else:
        raise RuntimeError("Types of vis and model visibility are invalid")

    assert vis.vis.shape == model_vis.vis.shape, "Observed %s and model visibilities %s have different shapes" \
                                                 % (vis.vis.shape, model_vis.vis.shape)

    if inplace:
        vis.data['vis'] = vis.data['vis'] - model_vis.data['vis']
        return vis
    else:
        residual_vis = copy_visibility(vis)
        residual_vis.data[
            'vis'] = residual_vis.data['vis'] - model_vis.data['vis']
        return residual_vis
Ejemplo n.º 4
0
 def subtract_vis(vis, model_vis):
     if vis is not None and model_vis is not None:
         assert vis.vis.shape == model_vis.vis.shape
         subvis = copy_visibility(vis)
         subvis.data['vis'][...] -= model_vis.data['vis'][...]
         return subvis
     else:
         return None
Ejemplo n.º 5
0
def sum_predict_results(results):
    """ Sum a set of predict results of the same shape

    :param results: List of visibilities to be summed
    :return: summed visibility
    """
    sum_results = None
    for result in results:
        if result is not None:
            if sum_results is None:
                sum_results = copy_visibility(result)
            else:
                assert sum_results.data['vis'].shape == result.data['vis'].shape
                sum_results.data['vis'] += result.data['vis']
    
    return sum_results
Ejemplo n.º 6
0
    def ft_ift_sm(ov, sm, g):
        assert isinstance(ov, Visibility) or isinstance(ov,
                                                        BlockVisibility), ov
        assert isinstance(sm, SkyModel), sm
        if g is not None:
            assert len(g) == 2, g
            assert isinstance(g[0], Image), g[0]
            assert isinstance(g[1], ConvolutionFunction), g[1]

        v = copy_visibility(ov)

        v.data['vis'][...] = 0.0 + 0.0j

        if len(sm.components) > 0:

            if isinstance(sm.mask, Image):
                comps = copy_skycomponent(sm.components)
                comps = apply_beam_to_skycomponent(comps, sm.mask)
                v = predict_skycomponent_visibility(v, comps)
            else:
                v = predict_skycomponent_visibility(v, sm.components)

        if isinstance(sm.image, Image):
            if numpy.max(numpy.abs(sm.image.data)) > 0.0:
                if isinstance(sm.mask, Image):
                    model = copy_image(sm.image)
                    model.data *= sm.mask.data
                else:
                    model = sm.image
                v = predict_list_serial_workflow([v], [model],
                                                 context=context,
                                                 vis_slices=vis_slices,
                                                 facets=facets,
                                                 gcfcf=[g],
                                                 **kwargs)[0]

        assert isinstance(sm.image, Image), sm.image

        result = invert_list_serial_workflow([v], [sm.image],
                                             context=context,
                                             vis_slices=vis_slices,
                                             facets=facets,
                                             gcfcf=[g],
                                             **kwargs)[0]
        if isinstance(sm.mask, Image):
            result[0].data *= sm.mask.data
        return result
Ejemplo n.º 7
0
    def ft_cal_sm(obv, sm):
        assert isinstance(obv, BlockVisibility), obv
        bv = copy_visibility(obv)

        bv.data['vis'][...] = 0.0 + 0.0j

        assert len(sm.components) > 0

        if isinstance(sm.mask, Image):
            comps = copy_skycomponent(sm.components)
            comps = apply_beam_to_skycomponent(comps, sm.mask)
            bv = predict_skycomponent_visibility(bv, comps)
        else:
            bv = predict_skycomponent_visibility(bv, sm.components)

        if docal and isinstance(sm.gaintable, GainTable):
            bv = apply_gaintable(bv, sm.gaintable, inverse=True)

        return bv
Ejemplo n.º 8
0
    def ft_cal_sm(ov, sm, g):
        assert isinstance(ov, Visibility), ov
        assert isinstance(sm, SkyModel), sm
        if g is not None:
            assert len(g) == 2, g
            assert isinstance(g[0], Image), g[0]
            assert isinstance(g[1], ConvolutionFunction), g[1]

        v = copy_visibility(ov)

        v.data['vis'][...] = 0.0 + 0.0j

        if len(sm.components) > 0:

            if isinstance(sm.mask, Image):
                comps = copy_skycomponent(sm.components)
                comps = apply_beam_to_skycomponent(comps, sm.mask)
                v = predict_skycomponent_visibility(v, comps)
            else:
                v = predict_skycomponent_visibility(v, sm.components)

        if isinstance(sm.image, Image):
            if numpy.max(numpy.abs(sm.image.data)) > 0.0:
                if isinstance(sm.mask, Image):
                    model = copy_image(sm.image)
                    model.data *= sm.mask.data
                else:
                    model = sm.image
                v = predict_list_serial_workflow([v], [model],
                                                 context=context,
                                                 vis_slices=vis_slices,
                                                 facets=facets,
                                                 gcfcf=[g],
                                                 **kwargs)[0]

        if docal and isinstance(sm.gaintable, GainTable):
            bv = convert_visibility_to_blockvisibility(v)
            bv = apply_gaintable(bv, sm.gaintable, inverse=True)
            v = convert_blockvisibility_to_visibility(bv)

        return v
Ejemplo n.º 9
0
def sum_visibility(vis: Visibility, direction: SkyCoord) -> numpy.array:
    """ Direct Fourier summation in a given direction

    :param vis: Visibility to be summed
    :param direction: Direction of summation
    :return: flux[nch,npol], weight[nch,pol]
    """
    # TODO: Convert to Visibility or remove?

    assert isinstance(vis, Visibility) or isinstance(vis, BlockVisibility), vis

    svis = copy_visibility(vis)

    l, m, n = skycoord_to_lmn(direction, svis.phasecentre)
    phasor = numpy.conjugate(simulate_point(svis.uvw, l, m))

    # Need to put correct mapping here
    _, frequency = get_frequency_map(svis, None)

    frequency = list(frequency)

    nchan = max(frequency) + 1
    npol = svis.polarisation_frame.npol

    flux = numpy.zeros([nchan, npol])
    weight = numpy.zeros([nchan, npol])

    coords = svis.vis, svis.weight, phasor, list(frequency)
    for v, wt, p, ic in zip(*coords):
        for pol in range(npol):
            flux[ic, pol] += numpy.real(wt[pol] * v[pol] * p)
            weight[ic, pol] += wt[pol]

    flux[weight > 0.0] = flux[weight > 0.0] / weight[weight > 0.0]
    flux[weight <= 0.0] = 0.0
    return flux, weight
Ejemplo n.º 10
0
def ical_list_serial_workflow(vis_list,
                              model_imagelist,
                              context,
                              vis_slices=1,
                              facets=1,
                              gcfcf=None,
                              calibration_context='TG',
                              do_selfcal=True,
                              **kwargs):
    """Run ICAL pipeline

    :param vis_list:
    :param model_imagelist:
    :param context: imaging context e.g. '2d'
    :param calibration_context: Sequence of calibration steps e.g. TGB
    :param do_selfcal: Do the selfcalibration?
    :param kwargs: Parameters for functions in components
    :return:
    """
    gt_list = list()

    if gcfcf is None:
        gcfcf = [create_pswf_convolutionfunction(model_imagelist[0])]

    psf_imagelist = invert_list_serial_workflow(vis_list,
                                                model_imagelist,
                                                dopsf=True,
                                                context=context,
                                                vis_slices=vis_slices,
                                                facets=facets,
                                                gcfcf=gcfcf,
                                                **kwargs)

    model_vislist = [copy_visibility(v, zero=True) for v in vis_list]

    if do_selfcal:
        cal_vis_list = [copy_visibility(v) for v in vis_list]
    else:
        cal_vis_list = vis_list

    if do_selfcal:
        # Make the predicted visibilities, selfcalibrate against it correcting the gains, then
        # form the residual visibility, then make the residual image
        model_vislist = predict_list_serial_workflow(model_vislist,
                                                     model_imagelist,
                                                     context=context,
                                                     vis_slices=vis_slices,
                                                     facets=facets,
                                                     gcfcf=gcfcf,
                                                     **kwargs)
        cal_vis_list, gt_list = calibrate_list_serial_workflow(
            cal_vis_list,
            model_vislist,
            calibration_context=calibration_context,
            **kwargs)
        residual_vislist = subtract_list_serial_workflow(
            cal_vis_list, model_vislist)
        residual_imagelist = invert_list_serial_workflow(residual_vislist,
                                                         model_imagelist,
                                                         context=context,
                                                         dopsf=False,
                                                         vis_slices=vis_slices,
                                                         facets=facets,
                                                         gcfcf=gcfcf,
                                                         iteration=0,
                                                         **kwargs)
    else:
        # If we are not selfcalibrating it's much easier and we can avoid an unnecessary round of gather/scatter
        # for visibility partitioning such as timeslices and wstack.
        residual_imagelist = residual_list_serial_workflow(
            cal_vis_list,
            model_imagelist,
            context=context,
            vis_slices=vis_slices,
            facets=facets,
            gcfcf=gcfcf,
            **kwargs)

    deconvolve_model_imagelist = deconvolve_list_serial_workflow(
        residual_imagelist,
        psf_imagelist,
        model_imagelist,
        prefix='cycle 0',
        **kwargs)
    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            if do_selfcal:
                model_vislist = predict_list_serial_workflow(
                    model_vislist,
                    deconvolve_model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)
                cal_vis_list = [copy_visibility(v) for v in vis_list]
                cal_vis_list, gt_list = calibrate_list_serial_workflow(
                    cal_vis_list,
                    model_vislist,
                    calibration_context=calibration_context,
                    iteration=cycle,
                    **kwargs)
                residual_vislist = subtract_list_serial_workflow(
                    cal_vis_list, model_vislist)
                residual_imagelist = invert_list_serial_workflow(
                    residual_vislist,
                    model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)
            else:
                residual_imagelist = residual_list_serial_workflow(
                    cal_vis_list,
                    deconvolve_model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)

            prefix = "cycle %d" % (cycle + 1)
            deconvolve_model_imagelist = deconvolve_list_serial_workflow(
                residual_imagelist,
                psf_imagelist,
                deconvolve_model_imagelist,
                prefix=prefix,
                **kwargs)
    residual_imagelist = residual_list_serial_workflow(
        cal_vis_list,
        deconvolve_model_imagelist,
        context=context,
        vis_slices=vis_slices,
        facets=facets,
        gcfcf=gcfcf,
        **kwargs)
    restore_imagelist = restore_list_serial_workflow(
        deconvolve_model_imagelist, psf_imagelist, residual_imagelist)
    return deconvolve_model_imagelist, residual_imagelist, restore_imagelist, gt_list
 def zero(vis):
     if vis is not None:
         zerovis = copy_visibility(vis, zero=True)
         return zerovis
     else:
         return None
Ejemplo n.º 12
0
def predict_list_serial_workflow(vis_list,
                                 model_imagelist,
                                 context,
                                 vis_slices=1,
                                 facets=1,
                                 gcfcf=None,
                                 **kwargs):
    """Predict, iterating over both the scattered vis_list and image

    The visibility and image are scattered, the visibility is predicted on each part, and then the
    parts are assembled.

    :param vis_list: list of vis
    :param model_imagelist: Model used to determine image parameters
    :param vis_slices: Number of vis slices (w stack or timeslice)
    :param facets: Number of facets (per axis)
    :param context: Type of processing e.g. 2d, wstack, timeslice or facets
    :param gcfcg: tuple containing grid correction and convolution function
    :param kwargs: Parameters for functions in components
    :return: List of vis_lists
   """

    assert len(vis_list) == len(
        model_imagelist), "Model must be the same length as the vis_list"

    # Predict_2d does not clear the vis so we have to do it here.
    vis_list = zero_list_serial_workflow(vis_list)

    c = imaging_context(context)
    vis_iter = c['vis_iterator']
    predict = c['predict']

    if facets % 2 == 0 or facets == 1:
        actual_number_facets = facets
    else:
        actual_number_facets = facets - 1

    def predict_ignore_none(vis, model, g):
        if vis is not None:
            assert isinstance(vis, Visibility) or isinstance(
                vis, BlockVisibility), vis
            assert isinstance(model, Image), model
            return predict(vis, model, context=context, gcfcf=g, **kwargs)
        else:
            return None

    if gcfcf is None:
        gcfcf = [create_pswf_convolutionfunction(m) for m in model_imagelist]

    # Loop over all frequency windows
    if facets == 1:
        image_results_list = list()
        for ivis, sub_vis_list in enumerate(vis_list):
            if len(gcfcf) > 1:
                g = gcfcf[ivis]
            else:
                g = gcfcf[0]
            # Loop over sub visibility
            vis_predicted = copy_visibility(sub_vis_list, zero=True)
            for rows in vis_iter(sub_vis_list, vis_slices):
                row_vis = create_visibility_from_rows(sub_vis_list, rows)
                row_vis_predicted = predict_ignore_none(
                    row_vis, model_imagelist[ivis], g)
                if row_vis_predicted is not None:
                    vis_predicted.data['vis'][
                        rows, ...] = row_vis_predicted.data['vis']
            image_results_list.append(vis_predicted)

        return image_results_list
    else:
        image_results_list = list()
        for ivis, sub_vis_list in enumerate(vis_list):
            # Create the graph to divide an image into facets. This is by reference.
            facet_lists = image_scatter_facets(model_imagelist[ivis],
                                               facets=facets)
            facet_vis_lists = list()
            sub_vis_lists = visibility_scatter(sub_vis_list, vis_iter,
                                               vis_slices)

            # Loop over sub visibility
            for sub_sub_vis_list in sub_vis_lists:
                facet_vis_results = list()
                # Loop over facets
                for facet_list in facet_lists:
                    # Predict visibility for this subvisibility from this facet
                    facet_vis_list = predict_ignore_none(
                        sub_sub_vis_list, facet_list, None)
                    facet_vis_results.append(facet_vis_list)
                # Sum the current sub-visibility over all facets
                facet_vis_lists.append(sum_predict_results(facet_vis_results))
            # Sum all sub-visibilties
            image_results_list.append(
                visibility_gather(facet_vis_lists, sub_vis_list, vis_iter))
        return image_results_list
 def sum_vis(bvis_list):
     bv_sum = copy_visibility(bvis_list[0], zero=True)
     for ibv, bv in enumerate(bvis_list):
         bv_sum.data['vis'] += bv.data['vis']
     return bv_sum